Knowledge Tracing -- 基于贝叶斯的学生知识点追踪(BKT)

本文介绍了智能教学系统中常用的BKT(贝叶斯知识追踪)模型,这是一种基于马尔科夫模型的算法,用于追踪学生知识点的掌握情况。BKT模型包括四个关键参数:L0、T、G和S,用于描述学生的学习状态和错误率。通过这些参数,可以构建一个HMM模型来训练和评估学生对不同知识点的掌握程度。此外,文章还探讨了模型的改进方向,如考虑学生个体差异和题目难度对模型的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       目前,教育领域通过引入人工智能的技术,使得在线的教学系统成为了智能教学系统(ITS),ITS不同与以往的MOOC形式的课程。ITS能够个性化的为学生制定有效的

学习路径,通过根据学生的答题情况追踪学生当前的一个知识点掌握状况,从而可以做到因材施教。

      在智能教学系统中,当前有使用以下三种模型对学生的知识点掌握状况进行一个追踪判断:

  1.     IRT(Item response theory)  项目反应理论
  2.     BKT(Bayesin knowledge tracing) 基于贝叶斯网络的学生知识点追踪模型
  3.     DKT(Deep konwledge traing)  基于深度神经网络的学生知识点追踪模型   

      今天我们主要说一下BKT:

       BKT是最常用的一个模型,BKT是含有隐变量的马尔可夫模型(HMM)。因此可以采用EM算法或者bruteForce 算法求解参数。

       BKT是对学生知识点的一个变化进行追踪,可以知道学生知识点的一个掌握情况变化。

      一般有个stop_policy准则,用于判断学生是否经过多轮的做题掌握了相应的知识点。      

       (Once that probability reaches 0.95, t

### 贝叶斯知识追踪 (BKT) 的参数估计方法 贝叶斯知识追踪(Bayesian Knowledge Tracing, BKT)是一种广泛用于教育数据挖掘中的技术,旨在实时评估学生的学习状态。其核心目标是通过观察学生的答题行为来推断他们对某一知识点的掌握情况。 #### 参数定义 BKT 模型通常由四个关键参数组成: 1. **初始掌握概率 \(P(L_0)\)**:表示学生在第一次接触某个知识点时已经掌握该知识点的概率。 2. **学习速率 \(P(T)\)**:表示学生未掌握某知识点但在后续尝试中学会它的概率。 3. **遗忘率 \(P(F)\)**:表示学生曾经掌握了某知识点但后来又忘记的概率。 4. **猜测率 \(P(G)\)** 和滑脱率 \(P(S)\):分别表示学生尽管未掌握知识点却猜对的概率,以及尽管已掌握知识点但仍做错的概率。 这些参数可以通过最大似然估计法或其他优化算法进行估算[^1]。 #### 参数估计方法 常用的 BKT 参数估计方法包括以下几种: 1. **期望最大化算法(EM Algorithm)** EM 算法是一种迭代优化方法,适用于隐变量模型的参数估计。对于 BKT 来说,学生的实际掌握状态是一个隐藏变量,而观测到的是他们的答题记录。通过反复执行 E 步骤(计算隐藏变量的条件分布)和 M 步骤(更新模型参数),最终可以收敛至一组最优参数[^2]。 2. **梯度下降法** 可以将 BKT 模型的目标函数设定为负对数似然函数,并采用梯度下降法对其进行最小化处理。这种方法的优点在于可以直接控制优化过程中的超参数(如步长、正则项系数等)。然而,在高维空间下可能会遇到局部极小值问题[^3]。 3. **马尔可夫链蒙特卡洛采样(MCMC Sampling)** 当面对复杂的数据集或者需要更精确的结果时,可以考虑使用 MCMC 方法来进行贝叶斯推理。相比于传统频率学派的观点,这种做法允许我们获得关于未知参数后验分布的信息而非仅仅点估计值[^4]。 #### Python 实现示例 下面给出一段简单的 Python 代码片段展示如何利用 scikit-learn 库实现基本版的最大似然估计: ```python from sklearn.mixture import GaussianMixture as GMM import numpy as np def estimate_bkt_parameters(data): """ 使用Gaussian混合模型近似求解BKT参数 :param data: 学生作答序列列表 [[correct/incorrect], ... ] :return: dict {parameter_name -> value} """ gmm = GMM(n_components=2, covariance_type='diag', max_iter=500) # 将输入转换成适合GMM的形式 reshaped_data = np.array([item for sublist in data for item in sublist]).reshape(-1, 1) gmm.fit(reshaped_data) means = gmm.means_.flatten() stds = np.sqrt(gmm.covariances_).flatten() p_guess = min(means) / (min(means)+max(stds)) p_slip = max(means)/(max(means)-min(stds)) result_dict = { 'p_learn': abs((means[1]-means[0])/(stds[1]+stds[0])), 'p_forget':abs((means[1]-means[0])/sum(stds)), 'p_guess':p_guess, 'p_slip':p_slip} return result_dict ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值