unique mapped reads

本文探讨了在基因测序比对中使用MapQ值筛选高质量比对结果的方法。MapQ值能够反映比对结果的可靠性,通过设定不同的MapQ阈值(如15、20或30等),研究者可以有效筛选出符合要求的比对reads,提高后续分析的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

就是指唯一比对的reads

现在人们已经开始避免使用unique mapped reads这个概念了,而转向使用mapq值来保留高质量的比对结果。因为mapq值反应了一组比对结果发生的可能性,MapQ = -10 log10(P), 比如结果为10,那就是1/10的概率会出现这个比对结果,如果我们认为0.05%是一个小概率的话,那个mapq值为15就可以用于筛选了, 如果认为0.01%是个小概率的话,mapq值为20就可以用于筛选了。但是人们往往从30这个值开始试起(1/1000的概率),如果它的筛选结果符合你的测序要求,就可以使用它了。如果不行,可以适当的调整这个筛选值。

samtools view -bhS -q 30 input.sam > output.bam

参考:关于map当中的unique mapped reads问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值