arcgis中欧氏距离操作_各种距离的归纳和总结

81865f7ebe48baa9c883f645e9c6864b.png

在软件开发和数据分析的过程中,有很多不同的距离的计算方法,如欧氏距离,马氏距离,等等。对这些距离的理解,有助于我们更好的建立模型,规划数据平台的存储和索引功能。网上对这些距离概念的介绍已经很多,本文的主要目的,是对这些概念做一个归纳和总结。

首先,我们需要对”距离”本身进行一些约束。我们所描述的距离,指的是度量空间(Metric space)的距离。良好的测距函数应具备以下特征:

  • 距离大于等于0;
  • 距离是对称的,即 a 到 b 的距离应等于 b 到 a 的距离;
  • 相同的输入,距离为0;
  • 满足三角不等式;

本文对一系列常见的,满足上述原则的距离定义,作以下分类:

1,连续 m 维空间中,点和点的距离

闵可夫斯基距离(明氏距离)适用于多维连续空间中两个点位置的判断。每个空间内的数值必须是连续的。 这一类距离定义包括:欧几里得距离(欧氏距离),曼哈顿距离,切比雪夫距离。 而这一族距离的定义,统称为闵可夫斯基距离。定义如下:

连续 n 维空间中两点

之间的明氏距离(闵可夫斯基距离)公式为:

p取1或2时的明氏距离是最为常用的:

  1. p=2即为欧氏距离
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值