1.【scikit-learn基础】--概述
2.【scikit-learn基础】--『数据加载』之玩具数据集
3.【scikit-learn基础】--『数据加载』之真实数据集
4.【scikit-learn基础】--『数据加载』之样本生成器
5.【scikit-learn基础】--『数据加载』之外部数据集
6.【scikit-learn基础】--『预处理』之 标准化
7.【scikit-learn基础】--『预处理』之 数据缩放
8.【scikit-learn基础】--『预处理』之 正则化
9.【scikit-learn基础】--『预处理』之 分类编码
10.【scikit-learn基础】--『预处理』之 离散化
11.【scikit-learn基础】--『预处理』之 缺失值处理
12.【scikit-learn基础】--『监督学习』之 线性回归
13.【scikit-learn基础】--『监督学习』之 岭回归
14.【scikit-learn基础】--『监督学习』之 LASSO回归
15.【scikit-learn基础】--『监督学习』之 支持向量机回归
16.【scikit-learn基础】--『监督学习』之 决策树回归
17.【scikit-learn基础】--『监督学习』之 随机森林回归
18.【scikit-learn基础】--『监督学习』之 K-近邻分类
19.【scikit-learn基础】--『监督学习』之 逻辑回归分类
20.【scikit-learn基础】--『监督学习』之 贝叶斯分类
21.【scikit-learn基础】--『监督学习』之 决策树分类
22.【scikit-learn基础】--『监督学习』之 随机森林分类
23.【scikit-learn基础】--『监督学习』之 支持向量机分类
24.【scikit-learn基础】--『监督学习』之 均值聚类
25.【scikit-learn基础】--『监督学习』之 层次聚类
26.【scikit-learn基础】--『监督学习』之 谱聚类
27.【scikit-learn基础】--『监督学习』之 空间聚类
28.【scikit-learn基础】--『回归模型评估』之误差分析
29.【scikit-learn基础】--『回归模型评估』之偏差分析
30.【scikit-learn基础】--『回归模型评估』之可视化评估
31.【scikit-learn基础】--『回归模型评估』之准确率分析
32.【scikit-learn基础】--『回归模型评估』之损失分析
33.【scikit-learn基础】--『分类模型评估』之系数分析
34.【scikit-learn基础】--『分类模型评估』之评估报告
35.【scikit-learn基础】--模型持久化
36.神经网络极简入门
37.神经网络中神经元的权重更新
38.机器学习的数学基础--向量,矩阵
39.机器学习的数学基础--微积分
40.scikit-learn中的Pipeline:构建高效、可维护的机器学习流程
41.掌握机器学习数据集划分
42.模型的泛化性能度量:方法、比较与实现
43.比较检验:找出最佳机器学习模型
44.直线思维的进化:线性到广义线性
45.线性判别分析(LDA):降维与分类的完美结合
46.线性模型与多分类问题:简单高效的力量
47.不平衡样本数据的救星:数据再分配策略
48.决策树:机器学习中的“智慧树”
49.决策树剪枝:平衡模型复杂性与泛化能力
50.当决策树遇上脏数据:连续值与缺失值的解决方案
51.多变量决策树:机器学习中的“多面手”
52.核函数:让支持向量机从“青铜”变“王者”
53.软间隔:让支持向量机更“宽容”
54.极大似然估计:频率学派与贝叶斯学派的碰撞与融合
55.从“朴素”到“半朴素”:贝叶斯分类器的进阶之路
56.集成学习双雄:Boosting和Bagging简介
57.集成学习常用组合策略:让多个模型“合作”得更好
58.集成学习中的多样性密码:量化学习器的多样性
59.同样的数据,更强的效果:如何让模型学会‘互补思维’?
60.你的聚类模型靠谱吗?5大外部指标彻底揭秘
61.聚类是如何度量数据间的“远近”的?
62.
不同数据场景下的聚类算法
63.降维技术:带你走进数据的“瘦身”世界
64.度量学习:让机器学会“距离”的奥秘
65.