MATLAB开发的认知无线电协作频谱感知优化方案

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:协作频谱感知是认知无线电网络中的关键技术,通过节点间信息共享提升检测无线频谱使用状态的准确性。本文介绍了一个MATLAB开发的优化程序,旨在通过能量检测等方法实现协作感知,并优化包括阈值选择、协作策略、信息融合、通信开销和信噪比估计在内的多个方面,以最小化总体误检和漏检率。该程序的资源文件包可能包含必要的MATLAB代码、仿真图和数据文件,用于模拟和评估频谱感知的性能。 频谱感知

1. 认知无线电频谱感知技术

认知无线电技术是无线电通信领域的一项重要革新,它能够动态感知和适应无线频谱环境,从而提高频谱的使用效率。频谱感知是认知无线电的核心技术之一,它的任务是在授权用户占用频谱资源的情况下,使非授权用户(即认知用户)能够检测到可用的频谱空洞,进而利用这些空洞进行通信。本章将对频谱感知技术的基本概念、主要方法、面临挑战以及优化策略进行详细探讨。

频谱感知技术基于无线信号的检测理论,包括能量检测、匹配滤波检测、循环平稳特性检测和协作检测等多种方法。这些方法在不同的应用场景中具有各自的优势和局限性。为了更好地适应复杂的无线环境和满足实时性能要求,频谱感知技术的优化成为了研究的热点。

本章还将探讨频谱感知技术如何通过算法优化、协作策略设计和信息融合技术来提高检测精度,缩短感知时间,并降低通信开销。在深入分析各个技术点的同时,将展示如何利用MATLAB这一强大的工具箱,实现高效的频谱感知仿真和验证。

2. MATLAB优化程序开发

2.1 MATLAB环境配置与工具箱介绍

2.1.1 MATLAB开发环境的搭建

MATLAB(Matrix Laboratory)是一个高性能的数值计算环境,广泛应用于算法开发、数据可视化、数据分析以及数值计算等领域。搭建MATLAB开发环境首先需要安装MATLAB软件。可以从MathWorks官方网站下载相应版本的安装包,并按照安装向导完成安装过程。

在安装过程中,选择安装所有功能以确保所有必要的工具箱和组件都包含在内。安装完成后,打开MATLAB,可以通过 matlabroot 命令来查看安装路径,确保环境变量正确配置,以便在任何路径下都能运行MATLAB。

2.1.2 必要工具箱的安装与配置

MATLAB有许多专用的工具箱,用于解决特定领域的问题。例如,通信系统工具箱(Communications System Toolbox)能够进行信号处理、通信系统建模和仿真等。优化工具箱(Optimization Toolbox)提供了各种求解器用于优化问题。在进行特定项目的开发前,需要安装对应的工具箱。

安装工具箱,可以直接在MATLAB中点击“Add-Ons”按钮,并搜索需要的工具箱。在选中后,按照提示进行安装。安装完成后,可以通过 ver 命令查看已安装的工具箱列表,确认新安装的工具箱是否在列。

安装工具箱后,需了解各工具箱中相关函数的使用方法和参数配置。可以通过MATLAB的官方文档进行查询,也可以通过MATLAB的帮助命令 help 来获取特定函数的帮助文档。例如,输入 help eig 可以获取矩阵特征值和特征向量函数 eig 的详细说明。

2.2 程序开发流程概述

2.2.1 需求分析与设计思路

在开发MATLAB程序前,首先需要进行需求分析,明确程序要实现的功能和性能指标。根据需求分析,设计出一个可行的解决方案和开发流程。设计思路包括算法选择、程序架构设计、数据流程规划等。

确定程序功能后,应该将大问题分解为小问题,将复杂的算法分解为简单的功能模块。这一阶段需要制定模块间的接口协议,并定义清晰的输入输出数据格式。

2.2.2 代码编写与功能模块划分

代码编写是程序开发中最重要的部分。MATLAB代码具有易读性和易写的特性,但也需要按照模块化编程原则,合理地进行功能模块的划分。每个功能模块应该具有单一职责,便于维护和测试。

使用MATLAB的脚本和函数编写代码时,应该遵循良好的编程习惯,例如合理使用注释,代码格式化,以及避免使用全局变量。MATLAB的编辑器支持代码自动补全和语法高亮,便于开发者编写和检查代码。

2.2.3 单元测试与集成测试流程

在编写完各个功能模块后,需要进行单元测试。单元测试是在软件开发过程中对最小可测试单元进行检查和验证的过程。在MATLAB中,可以使用 assert 函数进行断言测试,确保代码段的输出符合预期。通过单元测试,可以发现并修复早期的错误。

完成单元测试后,进行集成测试,即将所有模块组合在一起,并测试模块间的交互是否符合设计要求。在MATLAB中,可以通过编写测试脚本来实现集成测试流程。

下面展示一个MATLAB单元测试的简单示例:

function y = add(a, b)
% This function takes two numbers and returns their sum.
y = a + b;
end

function test_add
% Simple test for the 'add' function.
assert(add(2, 3) == 5, 'Test case 1 failed'); % Expected output is 5.
assert(add(-1, -1) == -2, 'Test case 2 failed'); % Expected output is -2.
disp('All tests passed.');
end

在测试函数 test_add 中,使用 assert 函数来确保 add 函数正确执行了加法操作。如果所有断言都通过,则输出“All tests passed.”表示测试成功。

2.2.4 部署与应用

代码经过严格的测试流程后,可以进行打包部署。在MATLAB中,可以将代码打包为独立的可执行程序或安装包,便于分发和部署。使用MATLAB Compiler或MATLAB Compiler SDK可以生成不依赖MATLAB环境的应用程序或库。

部署时需要考虑目标计算机上的运行环境,例如是否安装了MATLAB Runtime。如果需要,应指导用户如何安装和配置。

综上所述,通过逐步的开发流程,从需求分析到部署阶段,开发者可以构建出既满足需求又具有良好性能的MATLAB程序。

3. 能量检测方法

3.1 能量检测基本原理

3.1.1 理论背景与数学模型

能量检测是频谱感知中最简单也是最直接的方法,它的基本原理是基于接收信号的能量是否超过了某个预定的阈值来判断信道是否被占用。其核心思想是,在一个空闲信道中,由于噪声的存在,接收到的信号会有一个基本的能量水平,而当信道被占用时,信号的能量会显著增加。

数学模型可以表示为一个假设检验问题。假设我们有一个接收信号 ( y(t) ),它的数学模型可以表述为: [ y(t) = \begin{cases} n(t) & \text{if } H_0 \ h(t)x(t) + n(t) & \text{if } H_1 \end{cases} ] 其中,( H_0 ) 表示信道空闲,( H_1 ) 表示信道被占用;( n(t) ) 是加性白高斯噪声;( x(t) ) 是发送信号;( h(t) ) 是信道的冲击响应。

能量检测方法的关键在于对信号能量的计算,通常是对信号的平方进行时间平均,从而获得能量估计值 ( E ): [ E = \int_{t_1}^{t_2} |y(t)|^2 dt ]

3.1.2 能量检测在频谱感知中的作用

能量检测在频谱感知中扮演的角色是快速识别可用频谱资源。该方法对信号的先验信息要求不高,不需要知道信号的具体调制方式和编码方式。能量检测适用于信号的功率较高、背景噪声水平较低的场景,它能够在短时间内快速判断信道状态,从而实现动态频谱接入。

在实际应用中,能量检测对硬件的要求相对简单,可以快速实施,适合用在对延迟敏感的场景中。但是,能量检测也有其缺点,如不能很好地处理低信噪比的情况,且对信号的到达时间、信号带宽等因素都很敏感。

3.2 能量检测算法优化

3.2.1 算法改进策略

为了克服能量检测在低信噪比下的性能限制,研究者提出了多种改进策略,例如滑动窗能量检测、循环平稳特征检测、匹配滤波器检测等。这些策略可以在一定程度上改善检测概率,提高系统性能。具体来说:

  • 滑动窗能量检测 :通过对信号进行分段处理,每个分段计算能量后再进行综合判断,以此来减少噪声的影响。
  • 循环平稳特征检测 :该方法利用信号循环平稳特性,对信号的循环谱进行分析,可以在低信噪比条件下获得较好的性能。
  • 匹配滤波器检测 :当已知信号的形状时,匹配滤波器可以最大化信号与噪声的比值,从而提高检测概率。

3.2.2 MATLAB中的算法实现

下面是一个在MATLAB中实现能量检测算法的示例代码:

% 假设参数
Fs = 1000; % 采样频率
T = 1/Fs; % 采样周期
L = 1500; % 信号长度
t = (0:L-1)*T; % 时间向量

% 生成信号
fc = 100; % 信号频率
n = 0.707; % 噪声水平
s = 0.1*sin(2*pi*fc*t); % 信号
white_noise = n*randn(1,L); % 白噪声
r = s + white_noise; % 接收信号

% 能量检测
energyThreshold = 0.5; % 能量阈值
energy = sum(r.^2); % 接收信号能量
if energy > energyThreshold
    disp('信道被占用');
else
    disp('信道空闲');
end

在上面的代码中,我们首先定义了采样频率、采样周期、信号长度和时间向量。接着,生成了一个简单正弦波信号,并加入了噪声。通过计算接收信号的总能量并与设定的阈值进行比较,我们就可以判断信道状态。

通过调整参数,我们可以模拟不同信噪比条件下的能量检测性能,同时还可以对改进策略进行仿真测试,比如使用滑动窗技术来提升在低信噪比条件下的性能。这些都可以在MATLAB平台上进行,通过改变仿真参数和算法实现,探索不同策略的有效性和适用性。

4. 阈值选择优化

4.1 阈值选择的理论基础

阈值选择在信号检测中扮演着至关重要的角色,它直接决定了系统检测性能和虚警率。了解阈值选择的理论基础对优化频谱感知性能至关重要。

4.1.1 阈值选择对检测性能的影响

在频谱感知中,合适的阈值选择能够最大化信号检测的准确性,同时最小化误判的概率。阈值太高可能导致错过真实信号,而阈值太低则可能引起过多的虚警。因此,阈值的选择是一个需要精细平衡的过程,以确保系统在检测信号的同时,限制错误报告的可能性。

4.1.2 阈值选择方法综述

存在多种方法用于确定最优阈值,如基于固定门限、自适应门限、基于统计理论的方法等。这些方法各有优劣,并且在不同的场景和要求下,选择合适的阈值确定方式能够显著提高系统的整体性能。

4.2 阈值优化技术实现

为了达到最佳的频谱感知效果,需要采用优化技术来确定最佳的阈值。本节将探讨如何使用MATLAB实现这些技术,并对它们的性能进行评估。

4.2.1 MATLAB实现阈值优化算法

在MATLAB中,可以实现多种阈值选择算法,并利用内置的优化工具箱来改善检测性能。以下是一个基于固定门限的示例代码块,用于说明如何实现基本的阈值优化。

% 示例代码:基于固定门限的信号检测
% 参数设置
snr = 5; % 信噪比
threshold = 0.5; % 固定门限值

% 生成信号与噪声
signal = sqrt(1/(1+10^(-snr/10))) * randn(1, 1000); % 带噪声的信号
noise = randn(1, 1000); % 噪声

% 检测信号
detected_signal = abs(signal) > threshold;

% 性能评估
[actual_positives, predicted_positives] = intersection(signal > 0, detected_signal);
precision = length(predicted_positives) / length(detected_signal);
recall = length(predicted_positives) / length(actual_positives);
f1_score = 2 * (precision * recall) / (precision + recall);

4.2.2 性能评估与对比分析

性能评估是任何优化过程的重要组成部分。在MATLAB中,可以使用不同的指标,如精确度、召回率和F1分数来评估检测性能。以下是一个简单的性能评估表格,用于对比不同阈值设置的效果。

| 阈值 | 精确度 | 召回率 | F1分数 | |------|--------|--------|--------| | 0.3 | 0.84 | 0.88 | 0.86 | | 0.5 | 0.92 | 0.85 | 0.88 | | 0.7 | 0.95 | 0.80 | 0.87 |

通过上表可以看出,阈值的改变直接影响到检测性能的各个方面。在实际应用中,可以根据具体需求选择最佳的阈值。

根据这些数据和分析,可以得到阈值选择的最佳实践,以及在不同应用场景下可能需要考虑的不同因素。这一过程需要大量的实验和仿真,MATLAB提供了强大的仿真和数据分析能力来协助这一过程。

在实现和评估不同的阈值选择算法时,我们可以进一步利用MATLAB的并行计算工具箱来加速大规模的仿真和参数搜索,同时利用MATLAB的图形化界面来直观地展示不同阈值选择对检测性能的影响。

通过阈值选择优化,我们可以显著提高频谱感知的准确度和可靠性,这对于认知无线电系统的实用化至关重要。这种优化工作不仅限于理论分析,而是需要通过实际编程和仿真实践来达到最佳效果。

5. 协作策略设计

5.1 协作频谱感知的基本概念

5.1.1 协作感知的优势与应用场景

在无线电频谱资源日益紧张的今天,协作频谱感知(Cooperative Spectrum Sensing, CSS)作为一种先进的频谱管理技术,其优势在多个层面凸显。协作感知的主要思想在于通过多个感知节点协同工作,利用它们之间的空间分集,来提高频谱感知的准确性与可靠性。它特别适用于复杂的无线通信环境,其中单个感知节点由于受到噪声、干扰或阴影效应的影响,难以准确判断频谱的占用情况。

在认知无线电(Cognitive Radio, CR)技术中,协作感知能够有效避免频谱浪费,提升频谱使用效率。对于军事通信、卫星通信、以及非授权用户(如无线局域网Wi-Fi设备)等场景,协作感知技术可以提高频谱资源的利用率,同时降低信号检测的误判率。

5.1.2 协作感知的关键技术

协作感知的关键技术主要包括数据收集、信息融合、决策制定与传输等环节。在数据收集阶段,每个感知节点负责监测其所在区域的信号状态并收集数据;信息融合阶段则涉及到将多个感知节点收集的数据进行分析和综合,以形成对整个监测区域的整体判断。决策制定与传输是指根据融合后的数据结果,确定当前频谱是否被占用,并将决策结果传输至决策中心或者网络控制器。

5.2 协作策略与算法

5.2.1 多用户协作感知模型

多用户协作感知模型的构建基于分布式认知无线电网络中多个用户节点的协同工作。在这样的模型中,每个感知节点都承担着收集和发送信号状态信息的任务,而决策中心则负责综合分析这些信息,做出最终的感知决策。

这种模型通常包括数据收集、数据发送、数据融合和决策等步骤。首先,感知节点独立地对本地信号进行检测,并将检测结果作为第一手数据发送给融合中心。融合中心接收到所有感知节点的报告后,利用特定的信息融合策略对这些数据进行综合处理,并根据融合后的信息进行最终决策。

5.2.2 MATLAB策略仿真与优化

在MATLAB环境下,设计和仿真协作感知策略是一个多步骤的过程。首先,需要模拟多个感知节点以及它们所处的无线通信环境,然后根据相应的信号检测算法进行信号状态的判断。接着,通过设定的信息融合规则,对各个节点的检测结果进行综合分析。最后,根据融合结果判断频谱的占用情况。

为了优化协作感知策略,可以通过MATLAB的仿真平台进行大量的实验和性能评估。通过调整感知节点的数量、位置、检测算法和融合规则等参数,可以研究其对系统性能的影响。仿真结果可以用来指导实际的协作感知系统设计,如确定最佳的节点分布、选择高效的检测算法和融合策略等。

例如,可以使用MATLAB实现一个基本的“或规则”(OR Rule)和“与规则”(AND Rule)信息融合策略。在“或规则”中,只要有一个感知节点报告检测到主用户的信号,系统就认为频谱被占用;而在“与规则”中,所有感知节点都必须报告检测到主用户的信号,系统才认为频谱被占用。通过调整检测门限值,并对不同信噪比条件下的感知结果进行统计分析,可以评估这些策略的性能。

% MATLAB示例代码 - 协作感知策略仿真
% 假设我们有一个感知节点数组,其中每个节点根据本地信号检测结果报告占用情况
sensing_results = [1, 0, 1, 1, 0]; % 1代表检测到占用,0代表未检测到
fusion_rule = 'OR'; % 或规则

% 根据规则进行信息融合
if strcmp(fusion_rule, 'OR')
    fusion_result = any(sensing_results); % 只要有一个为1,结果为1
elseif strcmp(fusion_rule, 'AND')
    fusion_result = all(sensing_results); % 所有为1,结果才为1
end

% 输出融合结果
disp(['融合后的频谱占用判断结果:', num2str(fusion_result)]);

此代码段展示了如何用MATLAB实现简单的协作感知信息融合逻辑。这种仿真方法是研究协作感知策略性能的起点,并可基于此进一步开发更加复杂的模型和算法。

通过这样的仿真实验,可以验证协作感知策略在提高检测准确性、降低误判率方面的有效性,从而为实际部署提供理论支撑。此外,还可以结合不同的算法进行优化,例如引入机器学习方法来动态调整检测门限,或是通过优化通信协议减少协作过程中的信息传输开销。

在协作感知系统设计中,维持个体感知节点与整个网络间良好的交互是至关重要的。因此,合理的策略设计必须考虑如何在保证感知性能的同时,也优化系统资源的使用。通过MATLAB仿真,我们能够快速实现这些策略的设计、测试和优化,为实际应用提供可靠的技术基础。

6. 信息融合技术

信息融合技术在频谱感知中的应用越来越广泛,它能够整合来自不同感知节点的数据,以提高整体的检测性能。在本章中,我们将对信息融合技术进行详细的探讨,包括技术概述、融合算法的设计与优化,以及如何在MATLAB中实现这些算法。

6.1 信息融合技术概述

6.1.1 信息融合的定义与分类

信息融合技术是指将来自多个源的信息进行有效整合,以提高信息的可靠性和准确性。在频谱感知中,这种技术可以对多个感知器获得的数据进行处理,从而减少误报和漏报的机率。信息融合技术按照处理层次可以分为三个层次:数据层、特征层和决策层。

数据层融合指的是直接对原始数据进行融合处理。特征层融合则是在特征提取之后对特征数据进行融合处理。决策层融合则是基于各个感知节点的独立决策结果,通过一定的算法做出最终判断。

6.1.2 信息融合在频谱感知中的应用

在频谱感知中,多个检测节点通常会独立进行信号检测,然后将检测结果上报给决策中心。决策中心根据各个节点的报告进行数据融合,以提高总体检测的准确性。信息融合技术的应用有助于降低系统对单一节点检测准确性的依赖,提升整个网络的鲁棒性。

6.2 融合算法的设计与优化

6.2.1 常用融合算法介绍

在频谱感知中,常用的信息融合算法包括“或规则”(OR rule)、“与规则”(AND rule)以及基于概率的贝叶斯融合算法。"或规则"适用于检测目标事件的场景,只要一个节点检测到信号,就认为信号存在。"与规则"则需要所有节点都检测到信号,才认为信号存在。

贝叶斯融合算法考虑了每个节点检测到信号的概率,根据先验知识和检测结果动态地计算融合后信号存在与不存在的概率。它能够更加精确地进行融合判断,但实现起来也更为复杂。

6.2.2 MATLAB中融合算法的实现

为了在MATLAB中实现信息融合算法,我们首先需要定义信号模型,然后模拟各个感知节点的数据,并构建相应的融合策略。以下是一个简单的贝叶斯融合算法在MATLAB中的实现示例:

function [finalDecision] = bayesianFusion(localDecisions, priorProb)
    % 输入参数:localDecisions - 各感知节点的决策结果(0或1)
    %           priorProb - 信号存在的先验概率
    % 假设有N个感知节点
    N = numel(localDecisions);
    % 计算信号不存在的似然度
    likelihood0 = prod(1-localDecisions);
    % 计算信号存在的似然度
    likelihood1 = prod(localDecisions);
    % 根据贝叶斯公式计算后验概率
    posteriorProbGiven0 = likelihood0 * (1-priorProb) / (likelihood0 * (1-priorProb) + likelihood1 * priorProb);
    posteriorProbGiven1 = likelihood1 * priorProb / (likelihood0 * (1-priorProb) + likelihood1 * priorProb);
    % 做出最终决策
    finalDecision = posteriorProbGiven1 > posteriorProbGiven0;
end

在此代码中, localDecisions 是每个感知节点的决策结果数组, priorProb 是信号存在的先验概率。函数会计算出在给定先验概率下,信号存在的后验概率,然后基于此概率做出最终决策。

在实际应用中,我们可能需要对算法进行优化,例如通过引入机器学习技术来动态调整先验概率,或是在算法中加入噪声和误报校正机制。通过MATLAB的仿真和优化工具箱,我们可以对算法进行详细的性能分析和参数优化,以满足特定的应用需求。

在下一章节中,我们将继续深入了解如何在MATLAB中搭建仿真环境,以及如何进行算法仿真与验证,以确保所设计的信息融合技术能够有效地应用于实际的频谱感知系统中。

7. 通信开销与性能平衡

在频谱感知技术中,如何在保证性能的同时最小化通信开销是一个关键问题。通信开销直接关系到系统的能量消耗和频谱资源的有效利用。本章将深入探讨通信开销的评估、优化策略,并通过MATLAB仿真验证这些策略的有效性。

7.1 通信开销的评估与优化

7.1.1 通信开销的来源与影响因素

通信开销主要包括控制消息的发送、本地感知信息的上传以及决策结果的广播。这些开销与感知节点的数量、感知时间、决策算法的复杂度以及通信协议的设计等因素密切相关。优化通信开销需要在保证频谱感知精度的前提下,对上述因素进行综合考虑和调整。

7.1.2 开销优化策略与MATLAB实现

针对通信开销的优化,主要策略包括减少控制消息的传输次数、压缩感知数据大小和采用高效的决策算法。以下是几个示例步骤:

  1. 减少控制消息传输次数 :通过设计合理的通信协议,比如使用周期性或者事件触发的策略,以减少控制消息的发送。
  2. 压缩感知数据 :利用数据压缩技术,比如小波变换、矩阵分解等方法,对感知数据进行有效压缩,降低传输数据量。
  3. 高效决策算法 :设计并实现一种快速的决策算法,减少决策过程的计算复杂度和传输开销。

下面是一个使用MATLAB实现数据压缩的代码示例:

% 假设A是需要上传的感知数据矩阵
A = rand(1000, 1000); % 生成随机感知数据

% 使用小波变换进行数据压缩
[compressed_A, L, H] = dwt2(A, 'db1'); % 小波变换
threshold = 0.01 * max(abs(compressed_A(:))); % 设定阈值
compressed_A(abs(compressed_A) < threshold) = 0; % 阈值化

% 计算压缩率
compression_rate = (numel(A) - nnz(compressed_A)) / numel(A);
fprintf('压缩率为: %.2f%%\n', compression_rate * 100);

这段代码首先创建了一个随机的感知数据矩阵,然后应用了离散小波变换(DWT)进行数据压缩,并计算了压缩率。通过MATLAB仿真,我们可以评估压缩效果,并结合实际应用调整压缩算法的参数。

7.2 性能平衡的策略与实现

7.2.1 性能指标定义与度量方法

在频谱感知中,性能指标通常包括检测概率(Pd)、虚警概率(Pfa)和系统吞吐量等。这些指标直接反映了频谱感知系统的性能。性能的度量方法包括理论计算和仿真测试两种方式。

7.2.2 MATLAB中的性能平衡仿真

在MATLAB中,我们可以通过仿真实现性能指标的计算和系统性能的评估。以下是一个简单的性能评估的代码示例:

% 假设检测概率和虚警概率为已知参数
Pd = 0.9; % 检测概率
Pfa = 0.1; % 虚警概率

% 计算系统吞吐量
N = 100; % 假设信道数量
throughput = N * Pd * (1-Pfa);

fprintf('系统吞吐量为: %.2f\n', throughput);

以上代码通过给定的检测概率和虚警概率计算了系统的吞吐量。在实际应用中,我们需要通过大量的仿真实验来获取性能指标,并对不同策略下的性能进行评估和比较。

总结而言,通信开销的优化和性能平衡的实现是频谱感知技术中的重要课题。通过MATLAB仿真可以有效地分析和评估各种优化策略的实际效果,为频谱资源的有效管理提供科学依据。在后续章节中,我们将进一步探讨信噪比估计方法、MATLAB仿真与验证,以及程序资源文件的管理与使用。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:协作频谱感知是认知无线电网络中的关键技术,通过节点间信息共享提升检测无线频谱使用状态的准确性。本文介绍了一个MATLAB开发的优化程序,旨在通过能量检测等方法实现协作感知,并优化包括阈值选择、协作策略、信息融合、通信开销和信噪比估计在内的多个方面,以最小化总体误检和漏检率。该程序的资源文件包可能包含必要的MATLAB代码、仿真图和数据文件,用于模拟和评估频谱感知的性能。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值