r语言axis ticks_R语言绘制时间序列数据

该博客使用R语言对时间序列数据进行分析和可视化,涉及数据清洗、时间序列转化、绘制点线图以及调整轴刻度外观。通过计算不同年份和月份的平均值、标准差和标准误,使用ggplot2库创建了分面图和拟合曲线的折线图,展示大气中NO2浓度的变化趋势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

70ecffd880551284591875757bd8b5bf.png

通过一系列时间点上的观测来获取数据是司空见惯的活动。在商业上,我们会观测到周利率、日股票闭盘价、月价格指数、年销售量等,在气象上,我们会观测到每天的最高温度和最低温度、年降水、污染物含量等数据。时间序列分析的目的一般有两个方面:一是认识产生观测序列的随机机制,即建立数据生成模型;二是基于序列的历史数据,也许还要考虑其他相关序列或因素,对序列未来可能取值给出预测或预报。本文简单介绍一下基于R语言绘制一些时间序列数据,希望可以给刚刚接触时间序列应用的朋友一点点帮助。 01基于ggplot2绘制时间序列图

#加载分析所需要的包

library(TSA)

library(zoo)

library(lubridate)

#读取并清洗数据

data

data

data

names(data)

data$OMI_value

options(scipen = 3)

data$OMI_value

#将数据框数据转化为时间序列

data_time

#查看数据

head(data_time)

#清洗时间序列数据

data_time1

data_time1 </

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值