resnet50 pytorch实现

本文介绍了如何在 PyTorch 中实现 ResNet50 网络,包括安装依赖、定义基本块和主要网络结构,并提供了示例代码展示初始化及前向传播过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在 PyTorch 中实现 ResNet50 网络,您需要执行以下步骤:

  1. 安装 PyTorch 和相关依赖包。
  2. 导入所需的库,包括 PyTorch 的 nn 库和 torchvision 库中的 models 子库。
  3. 定义 ResNet50 网络的基本块,这些块将用于构建整个网络。
  4. 定义 ResNet50 网络的主要部分,包括输入层、残差块和输出层。
  5. 初始化 ResNet50 网络并进行前向传播。

以下是一个示例代码,该代码演示了如何使用 PyTorch 定义并运行 ResNet50 网络:

``` import torch import torch.nn as nn import torchvision.models as models

定义 ResNet50 网络的基本块

class BasicBlock(nn.Module): expansion = 1

def __init__(self, in_planes, planes,stride=1):
    super(BasicBlock, self).__init__()
    self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, 
PyTorch实现ResNet50网络,您需要执行以下步骤: 1. 安装PyTorch和相关依赖包。 2. 导入所需的库,包括PyTorch的nn库和torchvision库中的models子库。 3. 定义ResNet50网络的基本块,这些块将用于构建整个网络。 4. 定义ResNet50网络的主要部分,包括输入层、残差块和输出层。 5. 初始化ResNet50网络并进行前向传播。 具体实现可以参考以下代码: ``` import torch import torch.nn as nn import torchvision.models as models # 定义ResNet50网络的基本块 class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion*planes) ) def forward(self, x): out = nn.ReLU()(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = nn.ReLU()(out) return out # 定义ResNet50网络的主要部分 class ResNet50(nn.Module): def __init__(self, num_classes=1000): super(ResNet50, self).__init__() self.in_planes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self._make_layer(BasicBlock, 64, 3, stride=1) self.layer2 = self._make_layer(BasicBlock, 128, 4, stride=2) self.layer3 = self._make_layer(BasicBlock, 256, 6, stride=2) self.layer4 = self._make_layer(BasicBlock, 512, 3, stride=2) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * BasicBlock.expansion, num_classes) def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1]*(num_blocks-1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x): out = nn.ReLU()(self.bn1(self.conv1(x))) out = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)(out) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.avgpool(out) out = out.view(out.size(0), -1) out = self.fc(out) return out ``` 您可以使用上述代码来初始化ResNet50网络并进行前向传播。如果您想要使用CIFAR-10数据集进行训练和测试,可以参考上述代码中的用法部分。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值