BasicExcel入门:通过编程操作Excel文件

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:在数据处理领域,Excel是不可或缺的工具,而BasicExcel库为程序员提供了通过编程自动化Excel操作的能力。本教程将介绍如何使用BasicExcel的简单API进行Excel文件的读写,以及如何通过源码深入理解其工作原理。我们还将通过一个名为“excelread”的示例程序,展示如何实现读取Excel文件的基本操作。

1. BasicExcel库介绍

在当今数据驱动的世界中,自动化处理Excel文件的需求变得日益普遍。BasicExcel库应运而生,旨在简化Python开发者在进行Excel文件操作时的复杂度,提高工作效率。该库的设计理念基于直观的API设计,使得即使是初学者也能快速上手。对于有着5年以上经验的IT专业人士来说,BasicExcel不仅能够加速数据处理流程,还能够将复杂的操作转化为可复用的代码片段,极大地提高了代码的可维护性。

接下来,让我们深入了解BasicExcel的核心功能和优势。通过例子和具体的实现,我们将展示它如何在多种场景下,帮助开发者实现对Excel文件的有效管理和操作。从读取数据到格式化单元格,再到创建复杂的数据报告,BasicExcel库的灵活性和强大的功能将会一一展现。接下来,我们将介绍如何在Python环境下安装和使用这个库,以开始我们的Excel自动化之旅。

2.1 安装前的准备工作

在深入学习如何使用BasicExcel库之前,确保Python环境已经搭建完毕,并且熟悉基本的Python编程操作。此外,理解pip包管理器的功能和基本用法也是必备技能。

2.1.1 Python环境的检查与配置

确保您的系统中已经安装了Python环境。打开命令行工具(在Windows中为CMD或PowerShell,在macOS或Linux中为Terminal),输入以下命令以检查Python版本:

python --version

或在某些系统上,您可能需要使用:

python3 --version

如果系统提示未安装Python,请根据您的操作系统下载并安装Python。确保添加Python到系统的环境变量中,以便在命令行中直接访问Python命令。

2.1.2 pip包管理器的介绍和使用

pip是Python的包管理工具,用于安装和管理Python库。多数Python安装程序都会包含pip,但您可以通过以下命令检查pip是否已经安装:

pip --version

或在某些系统上:

pip3 --version

如发现pip未安装,可以从Python官方网站下载并安装它。一旦确认pip可用,您就可以开始安装BasicExcel库了。

2.2 BasicExcel的安装方法

安装BasicExcel库是一个简单的过程,但为了确保顺利安装,您需要理解安装命令并知道如何验证安装是否成功。

2.2.1 使用pip命令安装BasicExcel

在命令行中,输入以下命令来安装BasicExcel库:

pip install BasicExcel

或在某些系统中使用:

pip3 install BasicExcel

如果系统中有多个Python版本,您可能需要指定安装路径,例如:

pip3 install BasicExcel --user

2.2.2 检查安装成功与否的方法

安装完成后,您可以通过导入库并检查是否抛出错误来验证安装是否成功。在Python的交互式解释器中,输入:

import BasicExcel

如果没有错误信息,说明BasicExcel库安装成功。如果出现错误,错误信息通常会提供进一步的线索。

2.2.3 安装过程中常见问题及解决策略

在安装BasicExcel时,您可能会遇到权限问题或依赖冲突。如果您没有管理员权限,尝试使用 --user 参数进行安装:

pip install BasicExcel --user

如果遇到依赖冲突问题,尝试使用以下命令来升级所有依赖包:

pip install --upgrade BasicExcel

或者对于特定包:

pip install --upgrade package-name

为了防止依赖包版本不一致,建议在一个干净的Python环境中安装BasicExcel,例如使用 virtualenv conda

通过上述步骤,您应能够在您的系统上成功安装并验证BasicExcel库。接下来,您可以开始探索库的API和功能,进一步学习如何在项目中应用BasicExcel库。

3. BasicExcel库的API使用方法

3.1 基本API概述

3.1.1 API的分类和功能

在编程中,API(Application Programming Interface)是一组预定义的函数、协议和工具,用于构建软件应用程序。对于BasicExcel库而言,它提供的API可以让用户在Python代码中轻松地进行Excel文件的读写操作,无需深入了解底层的文件格式。API主要分为以下几类:

  • 工作簿操作API:允许用户创建、打开、保存、关闭Excel工作簿。
  • 工作表操作API:提供方法来选择、插入、删除工作表,以及调整工作表顺序。
  • 单元格操作API:能够对单个或多个单元格进行读写、样式设置、公式输入等操作。
  • 格式化操作API:定义了对单元格样式进行设置的函数,如字体、颜色、边框等。

3.1.2 快速入门示例

为了快速理解如何使用这些API,让我们先看一个简单的例子。以下代码展示了如何用BasicExcel创建一个Excel文件并写入一些数据:

import BasicExcel

# 创建一个新的工作簿
wb = BasicExcel.Workbook()

# 添加一个工作表,命名为"Sheet1"
ws = wb.add_sheet("Sheet1")

# 写入数据到单元格
ws.set_cell_value(1, 1, "Hello")
ws.set_cell_value(2, 1, "World")

# 保存工作簿到文件
wb.save("example.xlsx")

在这个例子中,我们首先导入了BasicExcel模块。接着,创建了一个新的工作簿对象 wb 。然后,我们向工作簿中添加了一个工作表,并将其命名为”Sheet1”。之后,我们使用 set_cell_value 方法在指定的单元格位置写入文本数据。最后,我们调用 save 方法将工作簿保存到本地文件”example.xlsx”。

接下来,我们将详细探讨核心API的使用方法。

3.2 核心API详解

3.2.1 工作簿操作API

工作簿是Excel操作中的基础,BasicExcel提供的工作簿操作API支持常见的工作簿管理功能:

  • 创建和打开工作簿:使用 Workbook() 构造函数来创建新的工作簿,或使用 openWorkbook() 来打开已存在的工作簿。
  • 保存工作簿:通过调用 save() 方法,可以将工作簿保存到指定路径。
  • 关闭工作簿:使用 close() 方法来关闭工作簿。此操作会释放所有相关资源。

3.2.2 工作表操作API

工作表是工作簿中的单个工作表,是存储数据的主体。工作表操作API使得管理这些工作表变得简单:

  • 获取工作表: get_sheet(name) get_sheet_by_index(index) 可以用来获取指定名称或索引的工作表。
  • 删除工作表: delete_sheet(name) delete_sheet_by_index(index) 可以删除指定工作表。
  • 移动工作表:可以调整工作表的顺序,通过 move_sheet(name, new_position) move_sheet_by_index(index, new_position)

3.2.3 单元格操作API

单元格是工作表的基本组成部分,单元格操作API提供了丰富的函数来操作单元格内容:

  • 获取单元格内容:使用 get_cell_value(row, col) 可以获取指定行和列的单元格内容。
  • 设置单元格内容: set_cell_value(row, col, value) 用于设置指定单元格的内容。
  • 删除单元格内容: remove_cell_value(row, col) 会清除单元格内容,仅留下空白单元格。

3.2.4 格式化操作API

格式化操作是美化数据展示的重要手段,格式化操作API包括:

  • 设置字体:通过 set_cell_font(row, col, font_name, font_size) 设置字体样式。
  • 设置颜色: set_cell_font_color(row, col, color) set_cell_background_color(row, col, color) 可以分别设置字体和背景颜色。
  • 设置边框:使用 set_cell_border(row, col, border_type) 可以为单元格设置不同的边框样式。

通过这些API,我们可以实现对Excel文件中数据的精确控制和高级操作,从而满足各种复杂的数据处理需求。接下来的章节将进一步深入介绍Excel文件的打开与读取操作。

4.1 Excel文件的打开

4.1.1 指定文件路径打开方式

在Python脚本中打开一个Excel文件的最直接方法是使用文件路径指定。这可以通过BasicExcel库提供的 open_workbook 函数实现。指定文件路径方式通常涉及以下几个步骤:

  • 首先,确保已经安装了BasicExcel库。
  • 导入BasicExcel库。
  • 指定文件路径。
  • 使用 open_workbook 方法打开文件。

以下是一个示例代码块:

import basicexcel

# 指定要打开的Excel文件路径
file_path = 'example.xlsx'

# 打开Excel文件
wb = basicexcel.open_workbook(file_path)

# 输出工作簿信息,验证是否打开成功
print(wb)

在上述代码中, file_path 变量需要替换为你实际的文件路径。需要注意的是, basicexcel.open_workbook 会返回一个工作簿对象,通过这个对象可以访问和操作Excel文件中的工作表。

4.1.2 程序运行中动态打开方式

动态打开Excel文件的方式,通常是指在程序运行时由用户指定打开哪个文件。这种情况下,我们可以结合标准库中的 os 模块和 input 函数来实现。下面是一个简单的例子:

import basicexcel
import os

# 获取当前目录下的所有文件名
file_names = os.listdir('.')

# 打印文件名列表,让用户选择
for index, file_name in enumerate(file_names):
    print(f"{index}: {file_name}")

# 获取用户输入的索引,选择文件
choice = int(input("Please choose a file to open: "))

# 根据索引获取文件名
file_name = file_names[choice]

# 确保用户选择了正确的文件格式
if file_name.endswith('.xlsx'):
    # 使用用户选择的文件路径打开工作簿
    wb = basicexcel.open_workbook(file_name)
    print(f"Workbook '{file_name}' opened successfully.")
else:
    print("Please select an Excel file.")

上述代码片段首先展示了当前目录下的所有文件名,并通过控制台输入让用户选择一个文件进行打开。 os.listdir('.') 用于获取当前目录下的所有文件和文件夹名称。通过遍历这些名称并打印,用户可以看到可用的文件列表。然后,用户通过输入一个数字索引来选择他们想要打开的文件。

需要注意的是,上述代码片段并不包含错误处理逻辑,例如用户可能输入了一个不存在的索引或者一个不是Excel文件的文件名。在实际应用中,应该添加适当的错误处理代码以确保程序的健壮性。

以上为第四章节内容,即“Excel文件的打开与读取操作”的详细介绍。下一章节将继续深入探讨如何在Python中使用BasicExcel库读取Excel文件的内容。

5. 工作表的选择和数据读取方法

在处理Excel文件时,有效地选择工作表和读取数据是基础且至关重要的步骤。它不仅影响到数据处理的效率,还直接关系到数据读取的准确性。本章将深入探讨如何高效选择工作表,以及如何运用不同的技巧来读取工作表中的数据。

5.1 工作表的选择策略

选择工作表是进行数据操作的第一步,正确的工作表选择策略可以显著提升数据处理的速度和准确性。

5.1.1 根据名称选择工作表

在BasicExcel中,可以根据工作表的名称来选择工作表,这是最常见也是最直接的选择方式。

import BasicExcel

# 打开Excel文件
wb = BasicExcel.Workbook('example.xlsx')
# 根据名称选择工作表
try:
    sheet = wb.get_sheet_by_name('Sheet1')
except Exception as e:
    print("指定的工作表不存在")

在上述代码中,使用 get_sheet_by_name 方法可以根据工作表的名称来获取相应的工作表对象。如果指定的工作表不存在,则会引发异常。

5.1.2 根据索引选择工作表

除了通过名称选择工作表,也可以根据工作表在Excel文件中的索引位置来选择工作表。通常,索引是从0开始的。

import BasicExcel

# 打开Excel文件
wb = BasicExcel.Workbook('example.xlsx')
# 根据索引选择工作表
try:
    sheet = wb.get_sheet_by_index(0)  # 获取第一个工作表
except Exception as e:
    print("索引超出范围")

使用 get_sheet_by_index 方法可以根据工作表的索引来获取工作表对象。需要注意的是,索引应该是有效的,否则会引发异常。

5.1.3 处理工作表不存在的异常

在使用工作表名称或索引选择工作表时,应考虑到工作表不存在的情况,适当进行异常处理。

import BasicExcel

# 打开Excel文件
wb = BasicExcel.Workbook('example.xlsx')
try:
    sheet = wb.get_sheet_by_name('不存在的工作表名')
except Exception as e:
    print("错误信息:", e)

通过捕捉异常,我们可以处理工作表不存在的情况,并给出相应的错误信息,这在数据处理中非常重要。

5.2 工作表中数据的读取技巧

读取工作表中的数据是数据处理过程中极为常见的需求。理解并掌握读取技巧可以提高数据处理的灵活性和效率。

5.2.1 读取连续区域的数据

要读取工作表中连续的数据区域,可以使用 range 方法来指定连续区域的范围。

import BasicExcel

# 打开Excel文件
wb = BasicExcel.Workbook('example.xlsx')
# 根据名称选择工作表
sheet = wb.get_sheet_by_name('Sheet1')

# 指定连续区域的起始和结束单元格
range_area = sheet.range('A1:C3')

# 读取连续区域数据
data = range_area.get_values()
for row in data:
    print(row)

在上述代码中, range 方法用于获取指定的连续区域, get_values 方法用于将区域内的数据读取出来,并以列表的形式返回。

5.2.2 读取不规则区域的数据

如果要读取的数据分布在不规则的单元格区域内,BasicExcel同样提供了灵活的读取方式。

import BasicExcel

# 打开Excel文件
wb = BasicExcel.Workbook('example.xlsx')
# 根据名称选择工作表
sheet = wb.get_sheet_by_name('Sheet1')

# 指定不规则的单元格区域
irregular_area = sheet.range(['A1', 'C3', 'E2', 'G4'])

# 读取不规则区域数据
data = irregular_area.get_values()
for row in data:
    print(row)

通过向 range 方法传递一个单元格地址列表,我们可以灵活读取不规则区域的数据。

5.2.3 实现条件筛选读取数据

在数据量较大时,我们可能希望根据特定条件筛选数据。BasicExcel可以配合条件表达式实现数据的筛选读取。

import BasicExcel

# 打开Excel文件
wb = BasicExcel.Workbook('example.xlsx')
# 根据名称选择工作表
sheet = wb.get_sheet_by_name('Sheet1')

# 使用条件表达式筛选数据
conditional_area = sheet.where(lambda row, col: row == 1 and col == 2)

# 读取筛选区域数据
data = conditional_area.get_values()
for row in data:
    print(row)

在上述代码中, where 方法用于设置条件表达式进行数据筛选,这里筛选的是第二行第三列的数据。条件表达式提供了灵活的数据筛选功能,可以根据实际需要进行各种复杂的逻辑判断。

本章节深入介绍了工作表的选择策略和数据读取技巧。正确运用这些策略和技巧能够提高工作效率,减少错误,是进行Excel数据处理时不可或缺的技能。接下来的章节将继续探讨数据的写入和保存操作,这些内容对于理解和掌握Excel数据处理的整个流程至关重要。

6. 数据的写入和保存操作

6.1 数据写入的准备工作

6.1.1 创建新的工作表

在进行数据写入之前,我们需要创建一个新的工作表。通过BasicExcel库,这个过程变得非常简单。我们可以使用 add_sheet 方法来创建一个新的工作表。下面是一个示例代码:

from basic_excel import Workbook

# 创建一个工作簿实例
wb = Workbook()

# 添加一个新的工作表,并指定工作表名称
ws = wb.add_sheet('Sheet1')

# 将工作簿写入到文件
wb.save('example.xlsx')

在上面的代码中,我们首先导入了 basic_excel 模块,然后创建了一个 Workbook 对象。接着,我们调用了 add_sheet 方法来创建一个新的工作表,同时给它命名为 Sheet1 。最后,我们使用 save 方法将工作簿保存为一个文件。这里需要注意的是,如果没有在 save 方法中指定文件路径,BasicExcel将默认保存到当前工作目录下。

6.1.2 扩展现有工作表内容

如果我们要向已有的工作表中添加内容,我们需要先获取该工作表的引用。下面是一个示例代码:

from basic_excel import Workbook

# 读取已存在的Excel文件
wb = Workbook('example.xlsx')

# 获取第一个工作表的引用
ws = wb.get_sheet_by_index(0)

# 在工作表中写入数据
ws.write('A1', 'Hello, BasicExcel!')

# 保存修改后的工作簿
wb.save()

在这个示例中,我们首先读取了一个名为 example.xlsx 的已存在的Excel文件。通过调用 get_sheet_by_index 方法并传入索引值 0 (索引值从0开始),我们获取了第一个工作表的引用。然后我们使用 write 方法在A1单元格中写入了文本 Hello, BasicExcel! 。最后,我们调用 save 方法保存了对工作簿所做的更改。

6.2 数据的写入方法

6.2.1 写入单个单元格数据

写入单个单元格是最基本的数据写入操作。单元格地址由列字母和行数字组成,如 A1 表示第一行第一列的单元格。下面是一个写入单个单元格数据的示例:

from basic_excel import Workbook

# 创建一个新的工作簿
wb = Workbook()

# 添加一个新的工作表
ws = wb.add_sheet('Sheet1')

# 写入数据到A1单元格
ws.write('A1', 'BasicExcel')

# 保存工作簿
wb.save('example.xlsx')

6.2.2 批量写入数据的技术

当处理大量数据时,批量写入可以显著提高效率。BasicExcel提供了 bulk_write 方法,允许一次性写入多个单元格数据。下面是一个批量写入的示例:

from basic_excel import Workbook

# 创建一个新的工作簿
wb = Workbook()

# 添加一个新的工作表
ws = wb.add_sheet('Sheet1')

# 准备要写入的数据,数据格式为字典,键为单元格地址,值为对应的单元格内容
data_to_write = {
    'A1': 'Name',
    'B1': 'Age',
    'C1': 'City'
}

# 使用bulk_write方法批量写入数据
ws.bulk_write(data_to_write)

# 保存工作簿
wb.save('example.xlsx')

6.2.3 使用公式和函数进行数据处理

在数据写入过程中,经常需要使用Excel的公式和函数进行计算和处理。BasicExcel也支持这些操作,例如,可以使用 write_formula 方法写入带有公式的单元格。下面是一个示例:

from basic_excel import Workbook

# 创建一个新的工作簿
wb = Workbook()

# 添加一个新的工作表
ws = wb.add_sheet('Sheet1')

# 在A2单元格写入公式,计算A1单元格的值加1
ws.write_formula('A2', '=A1+1')

# 假设A1单元格已经有值
ws.write('A1', 10)

# 保存工作簿
wb.save('example.xlsx')

在这个示例中,我们首先创建了一个工作簿并添加了一个工作表。然后我们使用 write_formula 方法在A2单元格中写入了一个公式,这个公式的作用是将A1单元格的值加1。之后我们假设A1单元格已经有值10,然后保存了工作簿。

6.3 Excel文件的保存与导出

6.3.1 保存为原格式文件

在对工作簿进行了各种操作之后,我们需要将其保存回Excel文件。这可以通过调用工作簿对象的 save 方法来实现。这个方法会将工作簿保存为一个 .xlsx 文件。

6.3.2 导出为其他格式(如CSV, PDF等)

BasicExcel库不仅支持Excel文件格式的保存,还可以导出为CSV和PDF等多种格式。这为数据处理提供了更多便利。下面分别展示如何导出为CSV和PDF格式。

导出为CSV格式
from basic_excel import Workbook

# 创建一个新的工作簿并添加工作表
wb = Workbook()
ws = wb.add_sheet('Sheet1')
ws.write('A1', 'Name')
ws.write('B1', 'Age')

# 导出为CSV格式的文件
wb.save('example.csv', file_format='csv')
导出为PDF格式
from basic_excel import Workbook

# 创建一个新的工作簿并添加工作表
wb = Workbook()
ws = wb.add_sheet('Sheet1')
ws.write('A1', 'Name')
ws.write('B1', 'Age')

# 需要先安装reportlab库,用于PDF文件的生成
# pip install reportlab

# 导出为PDF格式的文件
wb.save('example.pdf', file_format='pdf')

在上面的导出为PDF示例中,需要注意的是BasicExcel使用了 reportlab 库来生成PDF文件,因此在使用此功能之前需要先安装 reportlab 库。

通过以上章节内容,我们深入探讨了如何使用BasicExcel库进行数据的写入和保存操作。首先,我们介绍了创建和扩展工作表内容的技巧。随后,我们探讨了单个和批量数据写入的技术,以及如何使用公式和函数来处理数据。最后,我们学习了如何将工作簿保存为原格式以及其他格式如CSV和PDF。这些操作都是在Python中处理Excel文件时不可或缺的技能,掌握它们可以极大地提高数据处理的效率和灵活性。

7. BasicExcel与pandas等库结合使用

7.1 pandas库简介及其优势

7.1.1 pandas库的基本概念和数据结构

pandas是一个强大的Python数据分析库,它提供了易于使用的数据结构和数据分析工具。pandas中的核心数据结构是 DataFrame ,它是一个二维标签化数据结构,可以看作是一个表格或者说是Excel中的工作表。此外,还有 Series 数据结构,可以看作是 DataFrame 中的一列数据。

import pandas as pd

# 创建一个简单的DataFrame
data = {
    'Name': ['Alice', 'Bob', 'Charlie'],
    'Age': [24, 27, 22],
    'City': ['New York', 'Los Angeles', 'Chicago']
}
df = pd.DataFrame(data)

print(df)

7.1.2 pandas与数据科学的关系

pandas因其强大的数据处理能力,被广泛用于数据清洗、分析和准备等环节中,是数据科学领域不可或缺的工具之一。它与Matplotlib、NumPy等库的结合使用,可以构建完整的大数据分析和可视化流程。

7.2 在Python中整合BasicExcel与pandas

7.2.1 从Excel读取数据到pandas DataFrame

使用pandas库,我们可以非常简单地从Excel文件中读取数据到 DataFrame ,从而进行进一步的数据分析处理。

# 读取Excel文件到DataFrame
df_excel = pd.read_excel('example.xlsx')

# 查看DataFrame的前5行数据
print(df_excel.head())

7.2.2 将DataFrame数据导出到Excel

我们也可以将 DataFrame 中的数据导出到Excel文件中,便于分享和进一步处理。

# 将DataFrame导出到Excel文件
df_excel.to_excel('output_example.xlsx', index=False)

7.2.3 结合使用BasicExcel与pandas进行复杂数据处理

在有些情况下,我们可能需要在读取Excel文件后,进行复杂的数据处理,然后再将结果保存回Excel。这时,我们可以先使用pandas进行数据处理,再利用BasicExcel对结果进行格式化或者添加特定的Excel功能。

# 数据处理示例:过滤出年龄大于25岁的记录
filtered_df = df_excel[df_excel['Age'] > 25]

# 使用BasicExcel将处理后的数据保存到新的Excel文件
from basicexcel import Workbook, Worksheet

wb = Workbook()
ws = wb.new_sheet('Processed Data')
ws.set_column_width(0, 20)  # 设置列宽
ws.set_row_height(0, 20)  # 设置行高

# 将数据写入Excel
for row, data in enumerate(filtered_df.values):
    for col, value in enumerate(data):
        ws.write(row, col, value)

wb.save('processed_data.xlsx')

整合使用BasicExcel与pandas可以优势互补,极大地提高数据处理的效率和灵活性。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:在数据处理领域,Excel是不可或缺的工具,而BasicExcel库为程序员提供了通过编程自动化Excel操作的能力。本教程将介绍如何使用BasicExcel的简单API进行Excel文件的读写,以及如何通过源码深入理解其工作原理。我们还将通过一个名为“excelread”的示例程序,展示如何实现读取Excel文件的基本操作。


本文还有配套的精品资源,点击获取
menu-r.4af5f7ec.gif

资源下载链接为: https://pan.quark.cn/s/67c535f75d4c 在Android开发中,为了提升用户体验和视觉效果,背景模糊化处理是一种常用的设计手段。它可以为应用界面增添层次感,同时突出显示主要内容。本文将详细介绍如何在Android中实现背景模糊化功能。 首先,我们需要获取当前设备的壁纸作为背景。这可以通过WallpaperManager类来完成。调用WallpaperManager.getInstance(this.getContext())可以获取壁纸管理器实例,然后通过getDrawable()方法获取当前壁纸的Drawable对象。接下来,需要将壁纸Drawable转换为Bitmap对象,因为模糊处理通常需要在Bitmap上进行。可以通过((BitmapDrawable) wallpaperDrawable).getBitmap()来完成这一转换。 模糊处理的核心是使用Android的RenderScript API。RenderScript是一种高效的并行计算框架,特别适合处理图像操作。在blur()方法中,我们创建了一个RenderScript实例,并利用ScriptIntrinsicBlur类来实现模糊效果。ScriptIntrinsicBlur提供了设置模糊半径(setRadius(radius))和执行模糊操作(forEach(output))的方法。模糊半径radius可以根据需求调整,以达到期望的模糊程度。 然而,仅依赖ScriptIntrinsicBlur可能无法达到理想的模糊效果,因此我们还需要对原始图片进行缩放处理。为此,我们设计了small()和big()方法。先将图片缩小(small()),然后执行模糊操作,最后再将图片放大(big())。这种方式不仅可以增强模糊效果,还能在一定程度上提高处理速度。在small(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值