pandas 以字符串读取数据_Pandas处理文本数据|Pandas字符串处理|Pandas .str 属性|脑洞大开...

本文介绍如何使用Pandas的str属性处理文本数据。通过str属性,可以方便地对Series中的每个字符串元素进行操作,如转换为小写、统计长度、替换和分割等,同时展示了相关方法的使用示例,包括replace、split、extract和contains等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在 Pandas缺失值处理 | 轻松玩转Pandas(3) 介绍了 Pandas 中缺失值的处理,这一节我们来看一看如何处理 Pandas 中的文本(字符串)。

# 导入相关库

import numpy as np

import pandas as pd

Python

文章目录 [展示]

为什么要用str属性

文本数据也就是我们常说的字符串,Pandas 为 Series 提供了 str 属性,通过它可以方便的对每个元素进行操作。

index = pd.Index(data=["Tom", "Bob", "Mary", "James", "Andy", "Alice"], name="name")

data = {

"age": [18, 30, np.nan, 40, np.nan, 30],

"city": ["Bei Jing ", "Shang Hai ", "Guang Zhou", "Shen Zhen", np.nan, " "],

"sex": [None, "male", "female", "male", np.nan, "unknown"],

"birth": ["2000-02-10", "1988-10-17", None, "1978-08-08", np.nan, "1988-10-17"]

}

user_info = pd.DataFrame(data=data, index=index)

# 将出生日期转为时间戳

user_info["birth"] = pd.to_datetime(user_info.birth)

user_info

Python

age

birth

city

sex

name

Tom

18.0

2000-02-10

Bei Jing

None

Bob

30.0

1988-10-17

Shang Hai

male

Mary

NaN

NaT

Guang Zhou

female

James

40.0

1978-08-08

Shen Zhen

male

Andy

NaN

NaT

NaN

NaN

Alice

30.0

1988-10-17

unknown

在之前已经了解过,在对 Series 中每个元素处理时,我们可以使用 map 或 apply 方法。

比如,我想要将每个城市都转为小写,可以使用如下的方式。

user_info.city.map(lambda x: x.lower())

Python

---------------------------------------------------------------------------

AttributeError Traceback (most recent call last)

in ()

----> 1 user_info.city.map(lambda x: x.lower())

C:\soft\py3\lib\site-packages\pandas\core\series.py in map(self, arg, na_action)

2156 else:

2157 # arg is a function

-> 2158 new_values = m

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值