dog log 算子_【计算机视觉】SIFT中LoG和DoG比較

本文介绍了SIFT特征检测中LoG和DoG算子的区别。LoG需要5张图像和4个尺度系数,而DoG通过相邻高斯图像相减获取,需要6张图像和5个高斯图像。虽然DoG需要额外的高斯模糊操作,但减法运算简化了计算,降低了运算复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在实际计算时,三种方法计算的金字塔组数noctaves,尺度空间坐标σ,以及每组金字塔内的层数S是一样的。同一时候,如果图像为640*480的标准图像。

金字塔层数:

当中o_min = 0,对于分辨率为640*480的图像N=5。

每组金字塔内图像数:

S=3。即在做极值检測时使用金子塔内中间3张图像。

对于LoG每组金字塔内有S+2张图像(S=-1。0,1,2,3),须要做S+1次高斯模糊操作(后一张图像由前一张做高斯模糊得到)。而DoG每组金字塔有S+3张高斯图像。得到S+2张DoG图像。

尺度空间系数:

当中,S表示每组金字塔内图像层数,n为当前高斯层数。取0-4。DoG须要5个尺度系数得到6张GSS图像。而LoG仅仅须要前4个尺度系数得到5张图像。

LoG

高斯核使用正太分布(高斯函数)计算模糊模版,N维空间正太分布方程为:

于是,二维高斯模板上的距离中心点为(x,y)的元素相应高斯计算公式为:

规范化的高斯拉普拉斯图像为

终于构造LoG金字塔有5层。每层有S+2=5张图像,每层金字塔内每张图像尺度是前一张的k倍。即构成的连续尺度序列:

当中o为当前金字塔层数,n为在当前金字塔层中图像张数。

因为卷积计算性质:

在计算时。通过对前一张图像做尺度系数为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值