主流 LLM 部署框架

主流 LLM 部署框架

框架主要特点适用场景
vLLM- 超快推理(高吞吐)
- 动态批处理
- 支持 HuggingFace Transformer
- 支持 PagedAttention
高并发、低延迟在线推理
TGI (Text Generation Inference)- Huggingface官方出品
- 多模型管理
- 支持动态量化
- 支持 Flash Attention
生产环境大规模推理
Triton Inference Server- NVIDIA出品
- 支持多种框架(PyTorch、TensorFlow、ONNX)
- 多模型管理和自动Batching
通用模型部署、高性能
DeepSpeed-MII- 微调和推理一体化
- 支持数千亿参数推理(ZeRO-Inference)
- DeepSpeed集成
超大模型推理优化
FasterTransformer- NVIDIA高性能库
- 纯推理加速(TensorRT级别)
- 专为巨型模型而生
极限推理加速场景
Turbomind (By Alibaba)- 阿里自研,兼容 Huggingface
- 极致多卡推理
- FP16/BF16混合精度
大模型国产部署
vLLM+OpenAI API兼容- 通过OpenAI接口暴露
- 低成本私有部署
搭建内部API服务

 

搭建内部 API 服务的区别

不同框架提供的API服务有不同的实现和调优方式,下面列出不同框架搭建内部API服务的特点:

框架内部 API 服务搭建特点
vLLM- 快速响应:vLLM专注于超高吞吐量和低延迟,非常适合需要响应速度快的在线推理任务。
- 动态批处理:能够根据请求的大小动态调整批处理大小,进一步提升吞吐量。
- 适用场景:多用于高并发的API服务场景。
TGI (Text Generation Inference)- 多模型管理:支持同时管理多个模型,可以根据业务需求灵活切换模型。
- Flash Attention支持:提供高效的注意力机制,适用于需要高性能推理的服务。
- 适用场景:生产环境中大规模的推理服务,尤其适用于处理大量请求的场景。
Triton Inference Server- 多框架支持:支持PyTorch、TensorFlow、ONNX等多种框架,能够与不同类型的模型兼容。
- 自动Batching:能够自动进行批处理,优化吞吐量。
- 适用场景:适用于各种类型的API服务,无论是单个模型还是多个模型同时服务。
DeepSpeed-MII- 微调和推理一体化:能够同时进行微调和推理,适合需要根据用户反馈优化模型的场景。
- ZeRO-Inference:通过分布式优化,大幅降低对内存的需求,适合超大模型的推理。
- 适用场景:超大模型推理服务,尤其在云环境和大型计算集群中部署。
FasterTransformer- TensorRT加速:支持使用TensorRT等推理加速工具,极大提升推理速度。
- 适用场景:对推理性能要求极高的应用,特别是推理任务对延迟要求严格的场景。
Turbomind (By Alibaba)- 极致多卡支持:专为多卡部署优化,能够最大化硬件资源的利用率,适合大规模的推理任务。
- FP16/BF16混合精度:通过混合精度优化,提升推理性能并降低计算需求。
- 适用场景:大模型推理和国产化部署。
vLLM+OpenAI API兼容- 低成本私有部署:提供类似OpenAI API的接口,能够以较低的成本实现大模型的私有部署。
- 适用场景:公司内部API服务,适用于需要私有化的开发环境。

总结:

  • vLLMTGI 更适合于 在线推理高并发请求的场景,因为它们的 低延迟高吞吐量 设计。

  • Triton Inference Server 是一个多框架支持的通用推理框架,适合需要兼容多种框架和处理多模型的场景。

  • DeepSpeed-MII 更适合于 超大模型推理微调 场景,尤其是需要优化内存和推理性能的环境。

  • FasterTransformer 是专为高效推理而生,特别适合对延迟要求非常严格的任务。

  • Turbomind大模型部署多卡支持 方面非常强大,特别适用于国产化场景。

  • vLLM+OpenAI API兼容 提供了类似 OpenAI 接口的私有部署服务,适合有低成本部署需求的场景。

选择框架时的考虑:

  • 硬件资源:如果有多个 GPU 或者强大的硬件,DeepSpeed-MII 和 Turbomind 能发挥更大作用。

  • 推理性能:FasterTransformer 和 Triton 是极限推理加速场景的优选。

  • 应用规模和并发:vLLM 和 TGI 非常适合高并发的在线推理任务。

 

在服务器上部署大型语言模型LLM框架,通常需要经过以下几个关键步骤: ### 1. 硬件与环境准备 - **硬件要求**:大型语言模型对计算资源有较高要求,尤其是GPU的显存。推荐使用至少一块高性能GPU(如NVIDIA A100、V100或RTX 3090以上),并确保其驱动已安装。 - **操作系统**:建议使用Linux系统(如Ubuntu 20.04+),因其对深度学习框架支持良好。 - **软件依赖**:安装Docker和NVIDIA Container Toolkit以支持GPU加速的容器化部署[^2]。 ### 2. 选择合适的LLM框架 目前主流的大模型框架包括: - **Hugging Face Transformers**:适用于加载和微调各种预训练模型,支持PyTorch和TensorFlow后端。 - **LangChain**:适合构建具有上下文记忆、外部数据接入能力的应用程序,尤其适合需要链式逻辑处理的场景[^3]。 - **Ollama**:专为简化本地LLM部署而设计,通过Docker容器快速启动模型服务,特别适合远程交互式应用[^2]。 ### 3. 部署具体模型 以Hugging Face Transformers为例,可以通过以下方式加载模型并部署: ```python from transformers import AutoTokenizer, AutoModelForCausalLM # 加载预训练模型及其对应的分词器 model_name = "EleutherAI/gpt-neo-2.7B" # 示例模型 tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # 推理示例 input_text = "Hello, how are you?" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ``` 若采用Ollama,则可通过如下命令快速部署模型: ```bash # 拉取镜像并运行Ollama容器 docker pull ollama/ollama docker run -d -v ollama:/root/.ollama -p 11434:11434 ollama/ollama ``` 之后可通过API接口或命令行工具与模型进行交互。 ### 4. 模型优化与部署 - **量化与压缩**:为了提升推理速度并降低内存占用,可以使用模型量化技术(如INT8或FP16)。 - **服务化部署**:可将模型封装为RESTful API服务,使用Flask、FastAPI等框架提供对外接口。 - **多节点扩展**:对于大规模部署需求,可结合Kubernetes进行集群管理与负载均衡。 ### 5. 安全与访问控制 - 设置身份验证机制(如API Key)以保护模型服务。 - 使用HTTPS加密通信,防止数据泄露。 - 对于公网暴露的服务,建议设置防火墙规则限制访问来源。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CK_1024

请我喝一杯咖啡吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值