背景简介
- 本文基于书籍《Introduction to Multivariate Calibration》中关于多变量校准和人工神经网络(ANN)章节的内容,特别是关于多层感知器(MLP)的使用。文章将探讨ANN在处理非线性问题时的潜力,以及如何通过多变量校准技术提高分析的准确性。
多变量校准与非线性问题
- 多变量校准是分析化学中的一个重要领域,它涉及使用数学模型来分析数据并预测结果。非线性问题在化学分析中十分常见,尤其是在处理复杂系统时。MLP作为一种强大的人工神经网络,能够模拟复杂的非线性关系,因此在多变量校准中扮演着重要角色。
MLP在多变量校准中的应用
- MLP通过多层结构对数据进行处理,每一层都负责提取输入数据的不同特征。在多变量校准的上下文中,MLP能够从光谱数据中学习并提取与化学成分相关的复杂模式。MLP的这一特性使得它在肉类品质参数的分析中表现出色,如表14.2所示,MLP校准在预测肉类品质参数方面取得了与RBF和KPLS校准相当甚至更好的结果。
预测结果的可视化分析
- 通过在MVC1屏幕上点击“PREDICT”按钮,用户可以加载选定网络的参数文件并查看预测结果图。这些图表包括预测值与名义值的比较、联合置信区域测试以及预测误差分析等,为用户提供了直观的结果分析。
ANN架构与预测精确度
- ANN的架构对于预测精确度有着直接的影响。表14.2中展示了不同ANN架构的均方根误差(RMSEP)和相对误差(REP)等性能指标。通过对比不同架构的表现,可以发现MLP的结构对于预测肉类样本中的脂肪、水分和蛋白质含量具有决定性作用。
实际应用案例分析
- 在实际应用中,多变量校准技术被用来解决化学分析中的实际问题。例如,通过测量肉类样品的NIR光谱并结合ANN技术,可以预测样品的品质参数。这一过程涉及从光谱数据中选择合适的波长(使用SPA等方法),然后建立ILS模型来预测品质参数。
练习题解答与深入理解
- 为了加深对多变量校准和ANN的理解,书中提供了详尽的练习题及其解答。这些练习题涵盖了从基础的矩阵操作到复杂的数据分析方法,帮助读者通过实践来巩固理论知识。
理解S型传递函数和累积舍入误差
- 文章还介绍了S型传递函数和累积舍入误差的概念,这些是理解反向传播神经网络和ANN性能的关键因素。例如,Linnainmaa的泰勒展开和累积舍入误差的理论为ANN的发展提供了数学基础。
总结与启发
- 多变量校准结合ANN技术为复杂系统的化学分析提供了强有力的工具。通过多层感知器,我们能够有效处理非线性问题并提高预测的精确度。通过对预测结果的可视化和性能指标的分析,我们可以选择最适合特定应用的ANN架构。练习题的解答不仅帮助读者掌握理论知识,还培养了解决实际问题的能力。本文的深入探讨和案例分析,旨在启发读者在多变量校准领域中运用和探索更广泛的技术和方法。
参考文献
- Chiappini, F.A., Allegrini, F., Goicoechea, H.C., Olivieri, A.C.: Sensitivity for multivariate calibration based on multilayer perceptron artificial neural networks. Anal. Chem. 92, 12265–12272 (2020)
- Harrington, P.B.: Sigmoid transfer functions in backpropagation neural networks. Anal. Chem. 65, 2167–2168 (1993)
- Jansson, P.A.: Neural networks: an overview. Anal. Chem. 63, 357A-362A (1991)
- Linnainmaa, S.: Taylor expansion of the accumulated rounding error. BIT Numer. Math. 16, 146–160 (1976)
- Marini, F.: Artificial neural networks in foodstuff analyses: trends and perspectives a review. Anal. Chim. Acta 635, 121–131 (2009)
- Nakama, T.: Comparisons of single- and multiple-hidden-layer neural networks. In: Liu, D., Zhang, H., Polycarpou, M., Alippi, C., He, H. (eds.), Advances in Neural Networks. Lecture Notes in Computer Science, vol. 6675. Springer, Berlin, Heidelberg (2011)
- Smits, J.R.M., Melssen, W.J., Buydens, L.M.C., Kateman, G.: Using artificial neural networks for solving chemical problems Part I. Multi-layer feed-forward networks. Chemom. Intell. Lab. Syst. 22, 165–189 (1994)
- Werbos, P.J.: Applications of advances in nonlinear sensitivity analysis. In: Drenick, R.F., Kozin, F. (eds.) System Modeling and Optimization. Lecture Notes in Control and Information Sciences, vol. 38. Springer, Berlin, Heidelberg (1982)
- Zupan, J., Gasteiger, J.: Neural Networks in Chemistry and Drug Design, 2nd edn. Wiley VCH, Weinheim (1999)
- Zupan, J., Gasteiger, J.: Neural networks: a new method for solving chemical problems or just a passing phase? Anal. Chim. Actaacta 248, 1–30 (1991)