Docker 安装PyTorch + jupyter

本文介绍了如何通过Docker快速拉取PyTorch镜像并创建容器,详细步骤包括指定CUDA版本、挂载本地文件夹以及设置容器端口映射。接着,演示了在容器内安装JupyterLab以实现远程访问,并解决了文件权限问题。文中还提供了两种解决权限问题的方法:全局修改权限和调整容器内用户UID。最后,分享了启动和使用JupyterLab的命令,帮助用户构建便捷的学习环境。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、安装容器

1.方便起见,直接pull一个pytorch镜像,anibali/pytorch,选择合适的cuda版本。

$ docker pull anibali/pytorch:1.5.0-cuda10.2

参考https://github.com/anibali/docker-pytorch(注意看文档,他只在Ubuntu上测试过!)

2.上述文档中给出的usage中是这样的。

$ docker run --rm -it --init \
  --gpus=all \
  --ipc=host \
  --user="$(id -u):$(id -g)" \
  --volume="$PWD:/app" \
  anibali/pytorch python3 main.py

这段命令中镜像并没有指定版本,但最好指定,因为pull 镜像时加上版本了,如果这个地方不加版本它会创建一个新的镜像,跟原来的tag不同而已,像下面这样

如果你本身就有写好的python工程文件,可以修改--volume参数将文件夹挂载到容器中,然后直接使用这段命令执行。退出容器后容器会自行删除。

但是我需要在这个容器中安装jupyter lab,方便学习使用。故我创建container的命令是

$ docker run -it --init   --gpus=all   --ipc=host  --name pytorch -p 1778:8888  --volum
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值