python中func函数用法_python中Genarator函数用法分析

本文详细介绍了Python中Generator函数的定义及用法。Generator函数通过yield关键字生成数据,并且可以在生成过程中保留状态信息。适用于需要高效率处理大量数据的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文实例讲述了python中Genarator函数用法。分享给大家供大家参考。具体如下:

Generator函数的定义与普通函数的定义没有什么区别,只是在函数体内使用yield生成数据项即可。Generator函数可以被for循环遍历,而且可以通过next()方法获得yield生成的数据项。 def func(n):

for i in range(n):

yield i

for i in func(3):

print i

r=func(3)

print r.next()

print r.next()

print r.next()

print r.next()

运行结果如下: 0

1

2

0

1

2

Traceback (most recent call last):

File "generator.py", line 10, in

print r.next()

StopIteration

yield保留字与return 语句的返回值和执行原理都不相同。yield生成值并不会中止程序的执行,返回值后程序继续往后执行。return 返回值后,程序将中止执行。

Generator函数一次只返回一个数据项,占用更少的内存。每次生成数据都要记录当前的状态,便于下一次生成数据。

当程序需要较高的性能或一次只需要一个值进行处理时,使用generator函数。当需要获取一次性一组元素的值时,使用序列。

函数里只要有了yield,这个函数就会被编译成一个generator 函数。generator函数object支持python iterator protocol。 每次调用这个对象的next,generator函数就执行到yield,获取到yield生成的值。如果函数返回,就抛出一个异常。这里有个概念就是generator 函数使用yield生成一个值,而不是返回一个值。生成之后函数还没结束,返回了函数就结束了。 >>> x = gensquares(5)

>>> print x

>>> print x.next()

0

>>> print x.next()

1

>>> print x.next()

4

>>> print x.next()

9

>>> print x.next()

16

>>> print x.next()

Traceback (most recent call last):

File "", line 1, in ?

StopIteration

>>>

希望本文所述对大家的Python程序设计有所帮助。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值