一、概述
目前大多数的分布式架构底层通信都是通过RPC实现的,RPC框架非常多,比如前我们学过的Hadoop项目的RPC通信框架,但是Hadoop在设计之初就是为了运行长达数小时的批量而设计的,在某些极端的情况下,任务提交的延迟很高,所有Hadoop的RPC显得有些笨重。
Spark 1.6之前的版本 的RPC是通过Akka类库实现的,1.6之后引入了netty实现,Akka用Scala语言开发,基于Actor并发模型实现,Akka具有高可靠、高性能、可扩展等特点,使用Akka可以轻松实现分布式RPC功能。
二、Akka简介
Akka基于Actor模型,提供了一个用于构建可扩展的(Scalable)、弹性的(Resilient)、快速响应的(Responsive)应用程序的平台。
Actor模型:在计算机科学领域,Actor模型是一个并行计算(Concurrent Computation)模型,它把actor作为并行计算的基本元素来对待:为响应一个接收到的消息,一个actor能够自己做出一些决策,如创建更多的actor,或发送更多的消息,或者确定如何去响应接收到的下一个消息。
Actor是Akka中最核心的概念,它是一个封装了状态和行为的对象,Actor之间可以通过交换消息的方式进行通信,每个Actor都有自己的收件箱(Mailbox)。通过Actor能够简化锁及线程管理,可以非常容易地开发出正确地并发程序和并行系统,Actor具有如下特性:
1.提供了一种高级抽象,能够简化在并发(Concurrency)/并行(Parallelism)应用场景下的编程开发
2.提供了异步非阻塞的、高性能的事件驱动编程模型
3.超级轻量级事件处理(每GB堆内存几百万Actor)
三、架构图
四、重要类介绍
4.1 ActorSystem
在Akka中,ActorSystem是一个重量级的结构,他需要分配多个线程,所以在实际应用中,ActorSystem通常是一个单例对象,我们可以使用这个ActorSystem创建很多Actor。
4.2 Actor
在Akka中,Actor负责通信,在Actor中有一些重要的生命周期方法。
4.2.1 preStart()方法:该方法在Actor对象构造方法执行后执行,整个Actor生命周期中仅执行一次。
4.2.2 receive()方法:该方法在Actor的preStart方法执行完成后执行,用于接收消息,会被反复执行。
4.3 Master
Master为整个集群中的主节点
Master继承了Actor
4.4 Worker
Worker为整个集群的从节点
Worker继承了Actor
五、使用scala akka写一个简单的RPC通信框架,实现master自身通信和master与worker的通信
5.1 实现图解
5.2 实现过程
5.2.1 Master类实现
class Master extends Actor{
println("constructor invoked")
override def preStart(): Unit = {
println(" preStart invoked")
}
//用于接收消息
override def receive: Receive = {
case "connect" => {
println("a client connected")
sender ! "reply"
}
case "hello" => {
println("hello")
}
}
}
object Master {
def main(args: Array[String]): Unit = {
val host = args(0)
val port = args(1).toInt
//准备配置
val configStr =
s"""
|akka.actor.provider = "akka.remote.RemoteActorRefProvider"
|akka.remote.netty.tcp.hostname = "$host"
|akka.remote.netty.tcp.port = "$port"
""".stripMargin
val config = ConfigFactory.parseString(configStr)
//ActorSystem老大,辅助创建和监控下面的Actor,他是单例的
val actorSystem = ActorSystem("MasterSystem", config)
//创建Actor
//方式一:val master = actorSystem.actorOf(Props[Master], "Master")
val master = actorSystem.actorOf(Props(new Master), "Master")
master ! "hello"
actorSystem.awaitTermination()
}
}
5.2.2 Worker类实现
class Worker(val masterHost: String, val masterPort: Int) extends Actor{
var master: ActorSelection = _
//建立连接
override def preStart(): Unit = {
master = context.actorSelection(s"akka.tcp://MasterSystem@$masterHost:$masterPort/user/Master")
master ! "connect"
}
override def receive: Receive = {
case "reply" => {
println("a reply from master")
}
}
}
object Worker {
def main(args: Array[String]): Unit = {
val host = args(0)
val port = args(1).toInt
val masterHost = args(2)
val masterPort = args(3).toInt
//准备配置
val configStr =
s"""
|akka.actor.provider = "akka.remote.RemoteActorRefProvider"
|akka.remote.netty.tcp.hostname = "$host"
|akka.remote.netty.tcp.port = "$port"
""".stripMargin
val config = ConfigFactory.parseString(configStr)
val actorSystem = ActorSystem("WorkerSystem", config)
//创建Actor
actorSystem.actorOf(Props(new Worker(masterHost, masterPort)), "Worker")
actorSystem.awaitTermination()
}
}
5.3 实现结果
5.3.1 Master给自己发送消息成功
5.3.2 Worker连接到Master
5.3.3 Master成功向Worker回应消息