- 博客(31)
- 收藏
- 关注
原创 大模型应用效果差!80%问题在知识质量,极昆仑知识治理产品如何高效优化知识?
《极昆仑推出知识治理产品提升大模型应用效能》摘要: 在大模型时代,知识质量决定80%应用效果。极昆仑推出智能化知识治理产品,通过四大创新模块解决传统知识管理痛点:1)融合AI技术实现多模态数据处理;2)精准检测知识五大质量问题;3)智能推荐更新方案;4)构建可视化知识看板。该方案已在客服、运维等场景取得实效,响应时间缩短30%-40%,显著提升运营效率。极昆仑凭借10年NLP技术积累,为企业提供从知识治理到大模型落地的全栈解决方案,助力释放AI应用价值。(149字)
2025-06-25 20:27:08
255
原创 传统知识库如何升级到大模型知识引擎?
传统知识库向大模型知识引擎的升级,是企业知识管理体系的革命性变革。通过打造 “质量可控、语义可理解、关系可推理、进化可自主” 的新型知识引擎,企业实现从 “数据驱动” 到 “知识驱动” 的战略跨越,让大模型真正成为业务创新的核心引擎。
2025-06-18 14:43:14
457
原创 大模型时代,企业应构建怎样的知识库?
当 AI Agent 成为企业业务流程的 “数字员工”,其背后的知识库已不再是简单的存储容器,而是需要进化为动态、智能、精准的知识中枢
2025-06-11 12:44:08
581
原创 极昆仑智慧与数元灵科技达成战略合作
北京极昆仑智慧科技有限公司与北京数元灵科技有限公司正式签署产品级融合战略合作协议,双方将围绕 "AI+BI商业智能分析" " Hybrid RAG 大模型问答" 等核心大模型应用,实现技术架构与业务场景的深度集成,共同推出 "数据中台 + 智能应用"一体化解决方案,为企业级客户提供从数据治理到智能决策的全链路产品级服务。
2025-06-05 14:52:59
758
原创 极昆仑HybridRAG方案:突破原生 RAG 瓶颈,开启大模型应用新境界
RAG技术正从「高效知识获取」跃迁为「智能决策中枢」,破译数据语义壁垒,重塑企业知识价值闭环。极昆仑构建端到端服务体系,以场景洞察为锚、工程化能力为擎,打造可解释、可信赖的AI应用,助力企业将知识资产转化为竞争壁垒。
2025-06-05 14:37:41
577
原创 大模型在问数场景中面临的模式对齐挑战与解决方案
在NL2SQL实战中,超半数错误源于表关联与字段映射!本文详解Schema Linking三大挑战,破解路径包括层次化召回、值级反查、知识图谱增强、编码治理等,并展示医疗场景智能问数实测。
2025-05-28 15:07:58
759
原创 企业大模型应用五大核心误区与破局指南
当大模型从实验室走向实际业务场景时,企业常常面临 “技术预期” 与 “落地效果” 之间的巨大落差。唯有让技术能力、数据质量、团队专业性与业务场景「精准咬合」,才能突破演示级噱头,真正释放大模型作为 “生产力工具” 的价值。
2025-05-21 14:34:02
475
原创 如何提高大模型应用效果——提示词工程与数据工程的融合实践
大语言模型的成功落地,不仅依赖算法本身,更仰赖提示词设计的精度与数据处理的厚度。模型是引擎,但提示与数据,才是燃料与导航系统,通过提示词工程与数据工程的系统融合,企业不仅能让大模型能用,更能找得准、找得全。
2025-05-14 14:37:52
824
原创 智能问数方案:为何大小模型协同是必然选择?
大小模型协同架构,通过“分工协作、能力互补”的创新模式,正在重新定义智能查数的技术边界。这一架构深度融合大模型的语义泛化能力与小模型的专业深度,以“精准跃迁、高效协同、安全可信、成本可控”四大核心价值,为数据驱动型组织提供革命性解决方案。
2025-05-07 15:34:14
1040
原创 Agentic RAG:让 AI 从工具变「智能队友」
Agentic RAG 的出现,标志着AI 从 “被动执行指令” 迈向 “主动解决问题”。它不再是那个等你喂数据、按固定流程输出的工具,而是一个能理解需求、调用资源、动态规划的「智能协作伙伴」。
2025-05-07 14:35:13
1131
原创 多模态知识图谱:重构大模型RAG效能新边界
非结构化数据不再是低效利用的 “暗数据”,而是通过关联图谱转化为可检索、可推理、可生成的 “智能资产”。极昆仑以 “全模态知识图谱引擎” 重构 RAG 技术框架,让每一份文档、每一张图片、每一个表格都成为智能决策的基石。
2025-04-22 15:42:54
1170
原创 大模型赋能工业制造革新:10个显效可落地的应用场景
在工业4.0的时代浪潮中,数字化转型是企业发展的必由之路。然而,面对众多的数字化应用场景,企业或许还在为从哪里起步而迷茫。以上这十大变革性AI应用场景,涵盖了制造业研发、生产、供应链、资产管理等多个关键环节,为企业提供了全面且具有针对性的数字化转型参考。
2025-04-17 12:17:53
840
原创 让 AI 更靠谱:知识质量如何拯救 RAG 效果?
RAG 技术的本质是 “用人类知识训练 AI,再用 AI 放大人类智慧”。唯有将知识质量视为战略资产,通过数据治理、智能监控与持续优化,才能真正释放 RAG 的商业价值。
2025-04-10 14:16:32
262
原创 大模型重塑 BI 系统:ChatBI 只是一个开端
未来,大模型驱动的 BI 系统将成为企业的 "数字神经系统",实时感知市场变化,智能生成决策方案,最终实现从数据驱动到智能引领的跨越式发展。
2025-04-03 10:55:23
515
原创 大模型+知识图谱:赋能知识智能新升级
领域知识图谱+LLM”双驱动框架不仅是一种技术路径,更是一种面向未来的智能知识管理范式,尤其适用于需高频引用标准、强调结果一致性的场景。
2025-03-20 21:29:06
923
原创 大模型+知识图谱:重塑企业制度标准管理
摒弃传统关键词搜索,用户可通过自然语言提问,系统基于知识图谱和大模型的理解能力,提供精准搜索结果,涵盖标准条款、技术参数、操作流程、适用范围、实施案例、培训材料等。金融行业:帮助银行、保险、证券等金融机构快速响应监管政策的变化,自动检测政策冲突,确保业务操作的合法性和规范性,降低风险。大模型:通过海量数据的训练,大模型能够理解复杂的政策文本,提供精准的语义分析和内容生成能力,帮助用户快速理解和应用政策。知识图谱:将制度标准、SOP等知识结构化,构建一个互联互通的知识网络,实现政策间的关联分析和智能推理。
2025-03-05 20:47:35
749
原创 从序列标注到LLM评估:5款开源数据标注工具对比
本文总结了五种广泛应用的开源文本数据标注工具—Label Studio、Doccano、Argilla、YEDDA和Refinery的主要特性、优势及目标用户。
2025-02-26 17:34:45
2010
原创 从被动到主动:供应链风险全局感知与精准预测
极昆仑智能供应链风险预测凭借其全面整合多源数据、实时预警机制、智能化自动化处理能力、高度灵活与可扩展性设计、直观的可视化报告与决策支持,以及显著的成本与效益优化优势,为企业提供了一个高效、精准且灵活的风险管理工具,助力企业在复杂多变的市场环境中有效识别、预警并应对供应链风险,从而保障运营稳定,提升竞争力,实现可持续发展。
2025-01-15 17:21:07
918
原创 知识图谱与大模型融合:重塑工艺故障分析
极昆仑工艺故障分析创新性地应用知识图谱、机器学习、大模型等先进技术,突破了传统PFMEA的局限性,实现了故障分析和风险评估的自动化,极大提高了分析效率和准确性。为企业流程优化与质量控制提供了强有力的技术支撑,开启了工艺故障分析的新篇章。
2025-01-15 14:33:23
799
原创 知识图谱与大模型融合,重新定义设备故障诊断
智能故障诊断平台结合知识图谱、深度学习和大模型技术,通过实时故障诊断、根因分析、智能问答和知识库更新四大模块,为企业提供高效、精准的故障数据能力。系统能够实时分析设备现象,快速定位故障部件,推断故障根因,并通过自然语言交互提供直观的维修建议。
2025-01-14 11:05:08
3515
原创 大模型知识增强生成的难点与对策分析
大模型知识增强生成技术的核心在于高质量知识的获取、组织与应用,而这一过程离不开精细化数据治理和知识图谱融合。通过构建清晰的知识框架,优化数据治理流程,融合大模型与知识图谱等技术手段,可以有效提升知识增强生成的实际应用价值。
2025-01-10 14:12:07
948
原创 GraphRAG能让大模型落地应用转起来吗?
相比于标准 RAG 使用向量相似度和向量数据库进行检索,GraphRAG 利用知识库进行更全面、系统的信息检索,不仅依赖矢量相似度,还通过动态构建的知识图增强了语义关联与上下文理解,从而提高了检索的完整性和准确性。
2025-01-10 12:30:51
799
原创 检索增强生成(RAG)为何Demo易,落地难?
RAG作为一种结合检索与生成的创新框架,虽然在理论上具有显著的优势,但在实际落地过程中却面临着检索质量、推理效率、知识全局性等多方面的挑战。要真正实现RAG的广泛应用,不仅需要进一步优化检索算法和生成机制,还需要在数据质量、知识库构建和更新等方面进行大量投入。
2025-01-10 12:25:58
740
原创 大模型检索知识增强策略三板斧——预训练、微调、推理
检索知识增强(Retrieval knowledge enhancement)利用从各种知识库中检索到的相关信息来增强语言模型,已被证明能有效提高模型在各种任务上的性能。检索增强按增强参与阶段可分为三种类型:预训练增强、微调增强、推理增强。
2025-01-10 12:21:22
575
原创 信息获取从检索到交互问答演变
IQA系统,跟踪交互状态的能力增强了系统的实用性,标志着机器如何理解和响应人类语言的重大演变:用户期待搜索系统具备更强的自然语言处理能力、知识融合能力、更高级的信息提取能力、强生成能力、即时处理能力、上下文理解能力。
2025-01-10 11:57:10
836
原创 ABI:专为企业决策设计的商业智能分析(BI)平台
通过自然语言查询,管理层能够快速了解发电数据,并自动生成企业的经营日报、月报、季报和年报,大幅提升了数据报告的生成效率和准确性。数智时代,数据在企业决策中的重要性日益凸显,中外大中型企业,都在加入尝试用“数据驱动”替代传统的“专家经验”决策。平台会自动分析企业数据,识别出异常和趋势,关联相关事件,形成洞察结果,并在用户查询时直观地展示这些信息,同时自动生成洞察日报、周报、月报。企业购买BI产品通常是为了提升在营销、销售、产品与服务、财务、运营、战略规划等方面的决策质量与效率,从而促进企业的持续增长。
2025-01-09 16:02:15
453
原创 2025年商业智能平台(BI)八大趋势
企业正转向更具适应性、预见性和行动导向的分析工具,使企业不仅能够看懂历史数据,还能预测未来的趋势,甚至影响未来的业务成果。
2025-01-09 15:58:52
868
原创 BI简史:穿越数据迷雾的探索之旅(下)—BI智能的开端
BI技术与应用领域的发展主要围绕三个方向:AI与BI的深度融合、场景化应用实践,以及系统实践经验的积累。这些趋势表明,BI正在向更智能、更易用的方向快速发展。
2025-01-09 15:47:33
2076
原创 BI简史:穿越数据迷雾的探索之旅(中) —BI的形成与发展
本世纪头20年对BI有重要影响的技术、理论、需求。在本篇,我们可以更清晰地看到技术、理论、市场需求共同作用下,BI从最初的1.0时代,迭代至2.0时代,BI的灵活性、民主性受到重视,但BI的陡峭的学习曲线、数据处理与反馈非即时性、观察维度易偏狭的问题,也日渐凸显。
2025-01-09 15:32:06
894
原创 BI简史:穿越数据迷雾的探索之旅(上)-BI的起源与奠基
19世纪中期到20世纪,百余年的发展历程中,伴随着统计学、会计学、管理学的理论发展,以及计算机硬件、数据库、信息系统等技术的突破,BI从一个新造词,逐渐具象化,产生了很多分析海量数据的工具、平台。
2025-01-09 15:18:23
1861
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人