
RL
文章平均质量分 75
强化学习
Zhao-Jichao
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【RL】强化学习小例子 Q table 表单 Q learning 算法
文章目录0. 任务描述1. 伪代码2. Python 代码实现2.1 初始化一些参数2.2 新建一个空的 Q 表2.3 行为选择2.4 环境反馈2.5 更新环境2.6 主循环Ref: 看了两天书本《深入浅出强化学习》,感觉对概念理解的还是太笼统。鉴于做中学的思想,准备找个小例子跑一跑程序,加深下理解。 找了很多,要么太难,要么太笼统。只找到了莫烦Python老师的这个小例子,不仅有代码,还有视频讲解,感觉很多,跟着大佬学一学。 0. 任务描述 使用的任务是一个1维世界,在世界的右边有宝藏,智能体只要得到宝藏原创 2022-04-26 20:59:49 · 1998 阅读 · 0 评论 -
【深入浅出强化学习】3 基于模型的动态规划方法
文章目录3.1 基于模型的动态规划方法理论 3.1 基于模型的动态规划方法理论原创 2022-04-25 14:24:03 · 429 阅读 · 0 评论 -
【深入浅出强化学习】2 马尔可夫决策过程
文章目录2.1 马尔科夫决策过程理论讲解2.3 基于 gym 的 MDP 实例讲解Appendixgrid_mdp.py 文件代码 2.1 马尔科夫决策过程理论讲解 马尔科夫决策过程由元组(S,A,P,R,γS, A, P, R, \gammaS,A,P,R,γ)描述,其中: SSS 为有限的状态集 AAA 为有限的动作集 PPP 为状态转移概率 RRR 为回报函数 γ\gammaγ 为折扣因子,用来计算累积回报 2.3 基于 gym 的 MDP 实例讲解 Appendix grid_mdp.py 文件代码原创 2022-04-22 11:04:00 · 1732 阅读 · 0 评论 -
【深入浅出强化学习】1 绪论
文章目录1.5 强化学习仿真环境构建1.5.1 gym 安装及简单的 demo 示例1.5.2 深入剖析gym环境构建 1.5 强化学习仿真环境构建 1.5.1 gym 安装及简单的 demo 示例 pip3 install gym 最简单的例子 import gym % 导入Gym模块 env = gym.make('CartPole-v0') % 创建一个小车倒立摆模型 env.reset() % 初始化环境 env.render() % 刷新当前环境并显示 通过这6步,就可以得到一个小车倒立摆系原创 2022-04-22 10:43:10 · 315 阅读 · 0 评论 -
【RL】快速强化学习实战案例
文章目录案例【不倒翁】案例【小车自适应翻越小沟】Ref: 案例【不倒翁】 import gym import time ''' 基于强化学习实现不倒翁特性:自动平衡恢复 ''' if __name__ == "__main__": env = gym.make('CartPole-v0') for i_episode in range(20): observation = env.reset() for t in range(100):原创 2021-10-06 09:30:12 · 1276 阅读 · 0 评论