- 博客(3554)
- 收藏
- 关注
原创 预见未来:解锁语言模型的多重预测奥秘
MTP框架在现有研究的基础上进行了多项创新。MTP框架还引入了一个轻量级的采样器头(sampler head),这是一个基于两层MLP(多层感知器)的模块,用于从模型生成的丰富分布中提取多个令牌(见图3,Box-2)。它的设计灵感来源于Liu等人(2024)的工作,但与他们的方法不同,MTP的采样器并不直接进行多重令牌预测,而是专注于从模型的输出分布中高效采样。实验结果表明,MTP在代码和数学任务中实现了近5倍的加速,在聊天和知识任务中实现了约2.5倍的加速,为语言模型的未来发展开辟了新的可能性。
2025-07-24 06:02:42
287
原创 窥探语言模型的未来:解锁多词预测的秘密
自回归模型是一种基于前文预测下一个词的生成模型。给定上下文 ( c ),模型预测下一个词 ( y_t ) 的概率分布 ( p(y_t | c) ),然后采样一个词,添加到上下文,继续预测下一个词。这种逐词生成的方式在训练时简单高效,但在推理时却因其顺序性而效率低下。然而,人类的语言生成过程却截然不同。我们往往在脑海中先构思出完整的句子或段落,再逐词表达。这种“先全局后局部”的策略启发了研究者:语言模型是否也能一次性预测多个词?
2025-07-24 05:54:45
265
原创 记忆的迷宫:大型语言模型中从碎片到永恒的奇妙旅程
MemOS的设计哲学源于对LLM记忆研究的深刻洞察。参考文献将记忆研究分为三个阶段,就像一部史诗电影的三幕结构。第一阶段是“记忆定义与探索”。研究者沿参数 vs. 非参数、短期 vs. 长期维度分类记忆机制。隐式记忆通过预训练和适配器嵌入权重,知识编辑技术允许针对性修改,比如BERT模型的深层双向Transformer预训练。KV缓存和隐藏状态构成了隐式短期记忆的核心,维持上下文连续性并指导生成行为。显式短期记忆依赖提示串联,但受上下文窗口限制。
2025-07-24 00:00:00
467
原创 Numba:为Python数值计算插上翅膀的JIT编译器
除了使用参数,更通用的方法是将自定义的Numba函数直接应用于Pandas的底层数据。Pandas的DataFrame和Series底层是由NumPy数组构成的,因此可以通过.values或属性获取其底层的NumPy数组,然后将这个数组传递给Numba编译的函数进行处理。处理完成后,再将结果(通常也是一个NumPy数组)重新包装成Pandas对象。例如,可以编写一个@njit装饰的函数,接收一个二维NumPy数组,执行一系列复杂的行-wise或列-wise计算,然后返回结果数组。在Pandas中,可以通过。
2025-07-24 00:00:00
753
原创 从原子到符号:大语言模型中的符号机制架构解析
符号机制的涌现标志着上下文工程进入了“神经-符号融合”的新阶段。理解并善用这些机制,不仅能提升 LLM 的推理能力,也为构建更强大的智能系统奠定了坚实基础。场理论与认知工具的集成,则为我们打开了更广阔的创新空间。
2025-07-23 22:00:00
311
原创 语义的量子革命:从经典到量子语义的架构与设计思想
量子语义让我们重新认识“意义”的本质——它是观察者依赖、上下文驱动、非经典且充满不确定性的。通过量子语义的架构与设计思想,我们可以打造更智能、更灵活、更贴近人类认知的上下文系统,真正拥抱语义的复杂性与多样性。
2025-07-23 22:00:00
598
原创 Claude-Flow 的 “核引擎”:WebAssembly 如何驱动下一代 AI 协作
当我们审视的架构时,一个关键词反复出现,贯穿于从底层实现到高层文档的每一个角落——。在这个项目中,Wasm 并非一个实验性的附加功能,而是被定位为驱动其核心智能的、不可或缺的“核引擎”。它负责执行计算最密集、性能要求最高的任务:神经网络的推理和优化。本文将深入剖析是如何利用 Wasm 实现高性能 AI 计算,并探讨其背后的架构思想和工程实践。
2025-07-23 21:26:20
354
原创 Claude-Flow:解剖一个数字有机体的架构
在人工智能的浪潮中,我们见证了无数个强大的单一模型。然而,真正的挑战在于如何将这些独立的“大脑”编织成一个协调一致、能够解决复杂问题的“有机体”。项目正是对这一挑战的深刻回应。它不仅仅是一个工具集,更是一个关于如何构建、管理和扩展企业级 AI 智能体集群的架构蓝图。本文将深入解剖的内部结构,从其设计哲学到核心实现,揭示其如何构建一个模块化、有弹性、且具备智能的数字生命体。
2025-07-23 21:20:57
477
原创 SQLite作为大脑:深入剖析 `claude-flow` 的记忆架构
对 SQLite 的集成,为如何构建健壮、灵活且用户友好的数据持久化层提供了一份蓝图。通过将数据库抽象于一个战略性接口之后,借助优雅的降级系统构建弹性,并做出像这样的务实技术选型,该项目将 SQLite 从一个简单的数据库,转变为一个复杂而可靠的记忆系统的核心。这是一个展示了深思熟虑的架构如何解决真实世界工程挑战的绝佳范例。
2025-07-23 21:13:06
360
原创 SQLite as a Brain: A Deep Dive into Claude-Flow‘s Memory Architecture
【代码】SQLite as a Brain: A Deep Dive into Claude-Flow‘s Memory Architecture。
2025-07-23 21:10:25
289
原创 记忆之河:探秘 Claude-Flow 的智能记忆与协同系统
Claude-Flow v2.0.0 Alpha 是一个革命性的 AI 协同平台,其核心在于强大的记忆系统和多智能体协同机制。本文将深入剖析其记忆与协同系统的架构、功能和优化策略,带你走进一个如蜂群般高效协作的智能世界。
2025-07-23 21:00:00
672
原创 语义的时空迷宫:从符号的牢笼到心灵的永不重复之旅
🌌想象一下,你正站在一个巨大的图书馆前,这个图书馆不是堆满书籍的静谧之地,而是由无数闪烁的向量和算法构成的数字迷宫。你输入一个问题,希望从中提取出真正的“意义”,却发现每次得到的答案都像被压缩过的果汁——甜是甜了,但原汁原味的芬芳早已蒸发。这就是我们今天要探索的主题:为什么语义无法被计算?就像一首交响乐无法被简化为音符列表,语义的本质远超出计算的触手所能及。
2025-07-23 12:52:30
299
原创 解锁科学论文的秘密:知识图谱与大模型的问答提取之旅
科学文献处理技术就像一棵参天大树,根植于早期的文本摘要,逐渐成长为复杂的知识图谱构建。早期,研究者如Arman Cohan等人开发了SciBERT模型,专注于从科学文本的摘要中提取语义表示。这就像只看电影的预告片,虽然能抓住亮点,但错过了正片的高潮。后来,Isabel Cachola等人提出的TLDR方法实现了“极端摘要”,将整篇论文浓缩成几句话,但仍停留在单向信息传递,缺乏互动性。SciBERT和TLDR是什么?SciBERT像一个专为科学文本训练的语言侦探,能理解专业术语的语义;
2025-07-22 06:56:53
481
原创 MCP 通讯方式深度研究报告
MCP(模型上下文协议)作为一种新兴的、旨在标准化大型语言模型与外部世界交互的通信协议,其出现标志着AI应用开发向更高效、更灵活、更安全方向迈出了重要一步。通过对MCP通讯方式的深度研究,我们可以清晰地看到其在技术实现、应用场景和架构设计上的核心优势与未来潜力。在技术实现层面,MCP以为基础,提供了结构清晰、跨语言兼容的消息格式,并通过支持stdio和SSE等多种传输机制,适应了从本地进程间通信到远程网络交互的多样化需求。同时,通过引入Protobuf等高效序列化方案,以及心跳机制、一致性哈希负载均衡。
2025-07-22 06:43:33
541
原创 Apple MLX 生态系统中的 LLM 大语言模型:开源项目、Swift 集成、性能与限制
MLX 的动态解压缩量化权重至 FP16 进行计算的策略,结合 Apple Silicon 的 AMX (Apple Matrix Coprocessor) 单元,可以在保持较好性能的同时利用量化带来的内存优势。ANE 主要针对特定类型的神经网络层(如卷积、池化、全连接等)进行了高度优化,并且其对数据类型(如 16 位浮点或更低精度整数)的支持可能与 LLM 中常用的运算不完全匹配,或者需要特定的编译和优化才能充分发挥性能。这意味着更低的延迟和更高的吞吐量,尤其是在处理适合 GPU 并行化的矩阵运算时。
2025-07-22 00:00:00
960
原创 Reflex: Python 全栈应用开发
Reflex 就像一位魔法师,用纯 Python 的咒语打破了传统网络开发的复杂壁垒。它让开发者无需学习 JavaScript 或前端框架,就能构建出功能强大、界面精美的全栈应用。从前端的 React 组件到后端的 FastAPI 服务器,再到 WebSocket 的实时通信,Reflex 将复杂的网络技术封装在简单的 Python 接口背后,让创意得以快速落地。无论是数据科学家希望展示分析结果,还是创业者想要快速构建产品原型,Reflex 都提供了一条优雅而高效的路径。
2025-07-22 00:00:00
523
原创 创世之舞的终章:Kiro,一个正在涌现的“创造操作系统”【3/3】
它不仅仅是代码的集合,更是思想的架构,是人与AI共舞的舞台。:一个超越传统软件开发工具的概念,它提供了一套完整的框架和机制,用于系统性地引导和管理从概念到实现的全过程,将人与AI的智能融合,以实现更高质量、更有效率的创造。promptingKiro的设计,是对这个日益复杂、人与AI共存的时代的一次深刻回应。它雄辩地证明,最高效的创造模式,或许不是让AI代替我们思考,而是构建一个能让我们与AI的框架。它不再仅仅是关于如何写出更好的代码,而是关于如何建立一个更好的、更可靠的、更具远见的。
2025-07-22 00:00:00
382
原创 知识的迷宫:从图谱路径中唤醒医疗领域的超级智能
🌍想象一下,你正漫步在一个巨大的图书馆里,每本书不是孤立的,而是通过无数隐形的丝线连接成网。这些丝线代表关系,书籍则是概念——这就是知识图谱(KG)的魅力。在这个故事中,我们的主角是医疗领域的超级智能,它不是从天而降的万能神,而是从底层一步步构建起来的,就像一棵大树从种子发芽,根系深入土壤,枝叶伸向天空。
2025-07-21 22:48:39
804
原创 代码的魔法交响曲:对比强化学习如何让GPU舞动起来
想想看,这就好比让一个新手厨师通过不断尝试菜谱,并根据食客的反馈(速度就是反馈)来改进,最终成为米其林大厨,而不需要人类专家的指点。简单来说,就像教孩子区分苹果和香蕉,不仅说“这是苹果”,还强调“这个不像香蕉,因为它没有弯曲”。算法很简单:初始化微调后的模型M0,然后迭代N次生成一批CUDA代码,评估每个的执行性和正确性,只保留成功的,用它们训练模型。每个阶段都像故事中的章节,层层递进,最终让模型从菜鸟变成优化大师。幽默地说,这就像一个机器人厨师自己尝试菜谱,扔掉失败的,只保留成功的,最终菜单越来越丰富。
2025-07-21 22:36:13
746
原创 CrewAI:超越编排,打造最强大的代理式AI平台
CrewAI 旨在构建一个超越传统编排(Orchestration)的代理式AI(Agentic AI)平台,致力于成为市场上最强大的解决方案。其核心愿景是帮助企业从简单的概念验证(Proof of Concept)阶段,发展到在生产环境中部署和管理数百甚至数千个代理工作流,最终实现“代理原生”(agent-native)的组织形态。这意味着CrewAI不仅仅关注单个代理或任务的自动化,而是着眼于通过多代理协作来处理复杂、关键的业务流程,从而深刻改变企业的运营方式。
2025-07-21 21:27:40
607
原创 无用户名登录:PassKey 与 WebAuthn 的深度解析
*PassKey(通行密钥)**是一种基于公钥密码学的新型数字凭证,旨在替代传统的用户名和密码登录方式,提供更安全、更便捷的身份验证体验。其核心思想是利用存储在用户设备(如智能手机、电脑或专用安全密钥)上的非对称密钥对进行身份验证。私钥安全地存储在用户设备本地,并通过生物识别(如指纹、面部识别)或设备PIN码、屏幕锁定图案等方式进行保护;公钥则注册到用户要登录的在线服务(依赖方,Relying Party)。
2025-07-21 20:07:03
701
原创 Roo-Code项目架构与设计思想深度解析
Roo-Code是一个基于VSCode的AI编程助手扩展,它通过集成多种AI模型和服务,为开发者提供智能代码辅助、项目理解、任务自动化等功能。项目采用现代化的TypeScript架构,体现了高度的模块化、可扩展性和工程化思维。Roo-Code项目展现了现代软件工程的最佳实践,通过清晰的架构分层、完善的测试体系、灵活的扩展机制,构建了一个既强大又易用的AI编程助手。其MCP协议的实现为AI工具集成提供了标准化方案,代码索引系统展示了如何高效处理大规模代码库,国际化架构证明了全球化软件的设计方法。
2025-07-21 20:00:00
673
原创 RepVGG:结构重参数化原理、实现与性能对比分析
RepVGG 通过其独特的结构重参数化技术,在模型设计领域带来了新的视角和显著的优势。它不仅继承了 VGG 式简单结构的优点,还通过训练时的多分支设计克服了其训练困难的问题,最终在多个方面展现出卓越的性能。
2025-07-21 20:00:00
959
原创 Swift 6、TypeScript 和 Python 的 async/await 机制异同
TypeScript 和 Python 类似,事件循环驱动, excels 在 web/I/O,但 CPU 时需小心阻塞。Async/await 是一种编程模式,用于处理异步操作(如网络请求、文件读写或延时任务),让代码看起来像同步代码一样线性易读,同时避免阻塞程序的执行流。TypeScript 是 JavaScript 的超集,它的 async/await 直接基于 JS(EcmaScript 2017 引入)。这些 Demo 展示:三者都能并发执行,总时间短(非 5s),证明非阻塞和并发益处。
2025-07-21 00:00:00
631
原创 Kiro的灵魂:与“异类智能”的共生协议【2/3】
如果说“三相协议”是Kiro的骨骼,确保了软件开发的结构与秩序,那么它与AI的深度、透明协作,则是其流淌的血液和跳动的灵魂。Kiro并非将AI视为一个简单的代码打字机,而是将其提升为一个贯穿始终的、理性的“共生伙伴”。这种共生关系的设计,在(AI推理)和prompting(提示策略)这两个目录的文档中,得到了淋漓尽致的展现。:指与人类智能在本质上存在差异,但能够进行有效协作的非人类智能体,例如AI。
2025-07-21 00:00:00
1002
原创 大型语言模型的“白日梦”机制:Day-Dreaming Loop (DDL) 算法及其意义
大型语言模型(LLM)的“白日梦”机制,特别是通过Day-Dreaming Loop (DDL) 算法,旨在赋予LLM类似人类默认模式网络(DMN)的自发思考和创新能力。DDL通过在后台持续探索概念间的非显性联系,筛选有价值的新知并反馈至模型记忆,从而克服当前LLM在自主创新和产生真正新颖见解方面的局限。然而,其实现面临“白日梦税”等显著的计算成本挑战,但其战略意义在于可能推动AI实现根本性创新并构建技术壁垒。
2025-07-21 00:00:00
644
原创 Redis 8.0 新特性深度解析与TypeScript实战:构建智能论坛系统
Redis 8.0 版本带来了多项重大更新,旨在提升性能、扩展功能,并更好地支持现代应用,特别是人工智能(AI)和机器学习(ML)场景。其中,RediSearch 模块的深度集成以及全新的 Vector Set 数据类型的引入,是本次更新的核心亮点。这些新特性不仅增强了 Redis 作为高性能键值存储的能力,更将其提升为一个功能更全面的数据平台,能够处理复杂的搜索和相似性匹配任务。Redis 8.0 在性能方面也取得了显著进步,包括命令执行速度的提升、吞吐量的增加以及复制效率的优化。
2025-07-20 15:47:59
985
原创 记忆的迷宫:大型语言模型中从碎片到永恒的智慧之旅
回顾这场记忆之旅,MemOS填补了LLMs基础设施的空白,提供统一抽象和管理框架,提升推理连贯性、适应性和可扩展性。它预见一个以模块化记忆为核心的生态,支持去中心化记忆市场。未来方向包括跨LLM记忆共享(扩展MIP协议)、自演化MemBlocks(基于反馈优化)和可扩展市场(资产交易)。MemOS将LLMs从静态生成者转化为永续代理,我们期待社区协作,使记忆成为AI时代的首要资源。MIP是Memory Interchange Protocol,确保跨模型兼容。
2025-07-20 12:20:59
637
原创 将Manus的上下文工程经验应用于企业级AI代理:以Python技术栈为例
要将《AI代理的上下文工程:构建Manus的经验教训》一文中的经验教训应用于特定场景或技术栈,关键在于深入理解其核心原则,如**保持提示稳定以优化KV缓存命中率、使用上下文感知状态机管理工具调用、利用文件系统或数据库作为外部记忆、通过“复述”或todo列表操纵模型注意力、保留错误信息助力模型自我修正与学习,以及警惕“少样本陷阱”并提供多样化示例**。然后,针对目标应用场景(如企业内部知识问答系统)的具体需求和挑战,选择合适的技术栈(如Python生态中的LangChain框架、Flask/Django
2025-07-20 10:42:43
887
原创 上下文工程的未来蓝图:从Manus的航程到代理时代的黎明
想象一下,你是一位探险家,站在一个广阔的数字海洋边缘,手里握着一艘名为Manus的船。这艘船不是普通的木船,而是由人工智能编织而成,靠着上下文工程的魔法风帆前行。在这个故事中,我们将跟随Manus的创造者Yichao ‘Peak’ Ji的足迹,探索如何通过巧妙的上下文设计,让AI代理从笨拙的学徒变成敏捷的航海家。就像一艘船在汹涌的海浪中寻找最佳航道,我们将一步步揭开那些隐藏在代码和提示背后的秘密,确保每一次转舵都充满智慧和惊喜。
2025-07-20 08:43:00
944
原创 智慧的记忆:从混沌到秩序的上下文工程之旅
上下文工程是一门新兴的科学,却已是智能代理系统的核心支柱。无论模型多么强大,没有精心设计的上下文,它们都无法充分发挥潜力。Manus的开发历程表明,上下文不仅是信息的载体,更是代理行为的“导演”——它决定代理的效率、鲁棒性和扩展性。通过 KV 缓存优化、工具掩码、文件系统记忆、注意力操控、错误保留和多样性设计,Manus在数百万用户的实际测试中不断迭代,找到了一条通向高效代理的道路。这些经验并非通用的真理,但它们为其他开发者提供了一盏明灯,避免在上下文工程的迷雾中迷失方向。
2025-07-20 08:05:44
1157
原创 `Copilot for Xcode.app`架构剖析:一个纯粹的“控制面板”
在我们深入探索 Copilot for Xcode 的多进程架构时,除了作为“大脑”的和作为“信使”的,用户直接与之交互的主应用程序同样扮演着至关重要的角色。它的设计思想和架构选择,完美诠释了现代 macOS 应用如何实现关注点分离,提供流畅的用户体验。本文将聚焦于这个目录下的代码,从设计思想和架构层面,详细剖析这个用户界面的核心职责与实现方式。
2025-07-20 00:00:00
849
原创 Swift 5, TypeScript, and Python Async/Await 机制对比分析
在现代软件开发中,异步编程扮演着至关重要的角色。随着应用程序日益复杂,用户对响应速度和系统吞吐量的要求也越来越高。无论是处理高并发的网络请求、执行耗时的 I/O 操作(如文件读写、数据库访问),还是在不阻塞用户界面的前提下运行后台任务,异步编程都是实现这些目标的关键技术。传统的同步编程模型在执行长时间操作时会阻塞当前线程,导致应用程序无法响应其他请求或用户交互,从而造成糟糕的用户体验和低效的资源利用。
2025-07-20 00:00:00
925
原创 创世之舞:Kiro如何编织未来软件的生命图谱【1/3】
在浩瀚的数字宇宙中,我们正目睹一场前所未有的创世之舞。这并非关于星辰的诞生,而是关于智能与智慧的交融,关于软件生命形态的演化。传统意义上的“软件项目”,曾是人类智慧的结晶,却也常受混沌与浪费的困扰。需求如流沙般变幻,设计在代码成型后才显露缺陷,开发者在无尽的“返工”泥沼中挣扎。然而,一种名为Kiro的新型系统,正悄然改变这一切。它不仅仅是一个开发框架,更是一个精心设计的、用于引导人与AI进行共同创造的“生命支持系统”。
2025-07-20 00:00:00
689
原创 TypeScript AOT 编译器调研报告
AOT(Ahead-of-Time)编译,即提前编译,是一种在程序执行之前将源代码或中间代码完全编译成目标机器码的技术。与 JIT(Just-in-Time)编译在运行时动态编译不同,AOT 编译在应用程序运行前就已经完成了编译工作,生成可直接执行的机器码或优化过的字节码。这种预先编译的方式带来了多方面的优势。首先,AOT 编译能够显著提升应用的启动速度。由于代码已经预先编译为机器码,运行时无需再进行编译过程,从而减少了初始延迟。其次,AOT 编译通常能带来更好的运行时性能。
2025-07-19 21:02:57
858
原创 神经场与上下文工程的未来
神经场代表了上下文工程从离散到连续的根本性跃迁。通过拥抱基于场域的思维,我们打开了新的可能性,创造出更加灵活、更加持久、更加符合意义自然涌现规律的上下文系统。正如爱因斯坦所说:"场域是粒子的唯一支配机构。"在人工智能的世界中,我们正在发现:场域可能就是智能的唯一支配机构。从单个原子提示到分子化的少样本学习,从细胞化的记忆系统到器官化的多智能体协作,从神经生物学系统到神经场域——我们的旅程见证了人工智能从机械模仿向生物启发的深刻转变。
2025-07-19 19:13:58
904
原创 AG-UI (Agent-User Interaction Protocol) 调研报告
CopilotKit 是一个旨在帮助开发者将 AI 驱动的功能(如聊天机器人、代码辅助、内容生成等)快速集成到其应用程序中的开源框架和工具集。它提供了一系列 React 组件、Hooks 和 API,使得前端开发者可以相对容易地在他们的应用中构建类似“Copilot”的交互体验。CopilotKit 的核心目标是简化 AI 能力的应用,降低开发门槛,让开发者能够专注于构建核心业务逻辑,而不是从零开始实现复杂的 AI 集成。
2025-07-19 18:59:35
830
原创 代码之谜:Claude Code v1.0.33的逆向工程启示录
分层多智能体架构是一种将复杂任务分解为多个独立模块的系统设计,每个模块由一个或多个智能体负责处理。这种架构的优势在于模块化、可扩展性和容错性,特别适合需要并发处理和动态调度的场景。这种设计带来的好处显而易见:相比单一智能体系统,Claude Code的多智能体架构在处理。
2025-07-19 18:36:01
883
【WordPress开发】为特定样式段落添加交互功能的技术实现与最佳实践:前端与编辑器一致性保障方案
2025-07-19
【Misskey 技术架构深度调研】基于ActivityPub协议的去中心化社交网络平台设计与实现:前端Vue.js、后端Node.js及NestJS、数据库PostgreSQL、缓存Redis、任务
2025-07-15
### PIN AI 深度研究报告总结
2025-07-15
FOUNDATION AGENTS的进展与挑战 从脑启发智能到进化、协作和安全的系统 ### 人工智能大型语言模型驱动的智能体模块化架构及其安全性和进化机制综述
2025-04-09
TokenButler- Token Importance is Predictable.docx
2025-03-11
现有的长文本生成方法主要集中在从短输入生成长文本上,忽略了长输入和长输出任务 这类任务有许多实际应用,但缺乏可用的基准 此外,随着输入长度的增加,现有方法不可避免地会遇到“中间丢失”现象
2025-03-11
《从塔楼到尖顶:一次语音魔法的奇幻旅程》
2025-03-14
论文译文:LLM Maybe LongLM: SelfExtend LLM Context Window Without Tun
2024-07-10
巨型语言模型的 8 位量化:LLM.int8() 中文版论文
2024-06-12
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人