自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

步子哥的博客

分享有意义的内容

  • 博客(3554)
  • 收藏
  • 关注

原创 预见未来:解锁语言模型的多重预测奥秘

MTP框架在现有研究的基础上进行了多项创新。MTP框架还引入了一个轻量级的采样器头(sampler head),这是一个基于两层MLP(多层感知器)的模块,用于从模型生成的丰富分布中提取多个令牌(见图3,Box-2)。它的设计灵感来源于Liu等人(2024)的工作,但与他们的方法不同,MTP的采样器并不直接进行多重令牌预测,而是专注于从模型的输出分布中高效采样。实验结果表明,MTP在代码和数学任务中实现了近5倍的加速,在聊天和知识任务中实现了约2.5倍的加速,为语言模型的未来发展开辟了新的可能性。

2025-07-24 06:02:42 287

原创 窥探语言模型的未来:解锁多词预测的秘密

自回归模型是一种基于前文预测下一个词的生成模型。给定上下文 ( c ),模型预测下一个词 ( y_t ) 的概率分布 ( p(y_t | c) ),然后采样一个词,添加到上下文,继续预测下一个词。这种逐词生成的方式在训练时简单高效,但在推理时却因其顺序性而效率低下。然而,人类的语言生成过程却截然不同。我们往往在脑海中先构思出完整的句子或段落,再逐词表达。这种“先全局后局部”的策略启发了研究者:语言模型是否也能一次性预测多个词?

2025-07-24 05:54:45 265

原创 记忆的迷宫:大型语言模型中从碎片到永恒的奇妙旅程

MemOS的设计哲学源于对LLM记忆研究的深刻洞察。参考文献将记忆研究分为三个阶段,就像一部史诗电影的三幕结构。第一阶段是“记忆定义与探索”。研究者沿参数 vs. 非参数、短期 vs. 长期维度分类记忆机制。隐式记忆通过预训练和适配器嵌入权重,知识编辑技术允许针对性修改,比如BERT模型的深层双向Transformer预训练。KV缓存和隐藏状态构成了隐式短期记忆的核心,维持上下文连续性并指导生成行为。显式短期记忆依赖提示串联,但受上下文窗口限制。

2025-07-24 00:00:00 467

原创 Numba:为Python数值计算插上翅膀的JIT编译器

除了使用参数,更通用的方法是将自定义的Numba函数直接应用于Pandas的底层数据。Pandas的DataFrame和Series底层是由NumPy数组构成的,因此可以通过.values或属性获取其底层的NumPy数组,然后将这个数组传递给Numba编译的函数进行处理。处理完成后,再将结果(通常也是一个NumPy数组)重新包装成Pandas对象。例如,可以编写一个@njit装饰的函数,接收一个二维NumPy数组,执行一系列复杂的行-wise或列-wise计算,然后返回结果数组。在Pandas中,可以通过。

2025-07-24 00:00:00 753

原创 IPFS for WordPress插件架构设计与实现解析

本插件采用了高度模块化的设计架构,通过清晰的职责划分和接口设计实现了良好的扩展性。

2025-07-24 00:00:00 413

原创 从原子到符号:大语言模型中的符号机制架构解析

符号机制的涌现标志着上下文工程进入了“神经-符号融合”的新阶段。理解并善用这些机制,不仅能提升 LLM 的推理能力,也为构建更强大的智能系统奠定了坚实基础。场理论与认知工具的集成,则为我们打开了更广阔的创新空间。

2025-07-23 22:00:00 311

原创 语义的量子革命:从经典到量子语义的架构与设计思想

量子语义让我们重新认识“意义”的本质——它是观察者依赖、上下文驱动、非经典且充满不确定性的。通过量子语义的架构与设计思想,我们可以打造更智能、更灵活、更贴近人类认知的上下文系统,真正拥抱语义的复杂性与多样性。

2025-07-23 22:00:00 598

原创 Claude-Flow 的 “核引擎”:WebAssembly 如何驱动下一代 AI 协作

当我们审视的架构时,一个关键词反复出现,贯穿于从底层实现到高层文档的每一个角落——。在这个项目中,Wasm 并非一个实验性的附加功能,而是被定位为驱动其核心智能的、不可或缺的“核引擎”。它负责执行计算最密集、性能要求最高的任务:神经网络的推理和优化。本文将深入剖析是如何利用 Wasm 实现高性能 AI 计算,并探讨其背后的架构思想和工程实践。

2025-07-23 21:26:20 354

原创 Claude-Flow:解剖一个数字有机体的架构

在人工智能的浪潮中,我们见证了无数个强大的单一模型。然而,真正的挑战在于如何将这些独立的“大脑”编织成一个协调一致、能够解决复杂问题的“有机体”。项目正是对这一挑战的深刻回应。它不仅仅是一个工具集,更是一个关于如何构建、管理和扩展企业级 AI 智能体集群的架构蓝图。本文将深入解剖的内部结构,从其设计哲学到核心实现,揭示其如何构建一个模块化、有弹性、且具备智能的数字生命体。

2025-07-23 21:20:57 477

原创 SQLite作为大脑:深入剖析 `claude-flow` 的记忆架构

对 SQLite 的集成,为如何构建健壮、灵活且用户友好的数据持久化层提供了一份蓝图。通过将数据库抽象于一个战略性接口之后,借助优雅的降级系统构建弹性,并做出像这样的务实技术选型,该项目将 SQLite 从一个简单的数据库,转变为一个复杂而可靠的记忆系统的核心。这是一个展示了深思熟虑的架构如何解决真实世界工程挑战的绝佳范例。

2025-07-23 21:13:06 360

原创 SQLite as a Brain: A Deep Dive into Claude-Flow‘s Memory Architecture

【代码】SQLite as a Brain: A Deep Dive into Claude-Flow‘s Memory Architecture。

2025-07-23 21:10:25 289

原创 记忆之河:探秘 Claude-Flow 的智能记忆与协同系统

Claude-Flow v2.0.0 Alpha 是一个革命性的 AI 协同平台,其核心在于强大的记忆系统和多智能体协同机制。本文将深入剖析其记忆与协同系统的架构、功能和优化策略,带你走进一个如蜂群般高效协作的智能世界。

2025-07-23 21:00:00 672

原创 语义的时空迷宫:从符号的牢笼到心灵的永不重复之旅

🌌想象一下,你正站在一个巨大的图书馆前,这个图书馆不是堆满书籍的静谧之地,而是由无数闪烁的向量和算法构成的数字迷宫。你输入一个问题,希望从中提取出真正的“意义”,却发现每次得到的答案都像被压缩过的果汁——甜是甜了,但原汁原味的芬芳早已蒸发。这就是我们今天要探索的主题:为什么语义无法被计算?就像一首交响乐无法被简化为音符列表,语义的本质远超出计算的触手所能及。

2025-07-23 12:52:30 299

原创 代码的魔法标记:揭秘 Swift 中 @Xxxxx 的多面人生

Swift 的。

2025-07-22 22:00:00 828

原创 解锁科学论文的秘密:知识图谱与大模型的问答提取之旅

科学文献处理技术就像一棵参天大树,根植于早期的文本摘要,逐渐成长为复杂的知识图谱构建。早期,研究者如Arman Cohan等人开发了SciBERT模型,专注于从科学文本的摘要中提取语义表示。这就像只看电影的预告片,虽然能抓住亮点,但错过了正片的高潮。后来,Isabel Cachola等人提出的TLDR方法实现了“极端摘要”,将整篇论文浓缩成几句话,但仍停留在单向信息传递,缺乏互动性。SciBERT和TLDR是什么?SciBERT像一个专为科学文本训练的语言侦探,能理解专业术语的语义;

2025-07-22 06:56:53 481

原创 MCP 通讯方式深度研究报告

MCP(模型上下文协议)作为一种新兴的、旨在标准化大型语言模型与外部世界交互的通信协议,其出现标志着AI应用开发向更高效、更灵活、更安全方向迈出了重要一步。通过对MCP通讯方式的深度研究,我们可以清晰地看到其在技术实现、应用场景和架构设计上的核心优势与未来潜力。在技术实现层面,MCP以为基础,提供了结构清晰、跨语言兼容的消息格式,并通过支持stdio和SSE等多种传输机制,适应了从本地进程间通信到远程网络交互的多样化需求。同时,通过引入Protobuf等高效序列化方案,以及心跳机制、一致性哈希负载均衡。

2025-07-22 06:43:33 541

原创 Apple MLX 生态系统中的 LLM 大语言模型:开源项目、Swift 集成、性能与限制

MLX 的动态解压缩量化权重至 FP16 进行计算的策略,结合 Apple Silicon 的 AMX (Apple Matrix Coprocessor) 单元,可以在保持较好性能的同时利用量化带来的内存优势。ANE 主要针对特定类型的神经网络层(如卷积、池化、全连接等)进行了高度优化,并且其对数据类型(如 16 位浮点或更低精度整数)的支持可能与 LLM 中常用的运算不完全匹配,或者需要特定的编译和优化才能充分发挥性能。这意味着更低的延迟和更高的吞吐量,尤其是在处理适合 GPU 并行化的矩阵运算时。

2025-07-22 00:00:00 960

原创 Reflex: Python 全栈应用开发

Reflex 就像一位魔法师,用纯 Python 的咒语打破了传统网络开发的复杂壁垒。它让开发者无需学习 JavaScript 或前端框架,就能构建出功能强大、界面精美的全栈应用。从前端的 React 组件到后端的 FastAPI 服务器,再到 WebSocket 的实时通信,Reflex 将复杂的网络技术封装在简单的 Python 接口背后,让创意得以快速落地。无论是数据科学家希望展示分析结果,还是创业者想要快速构建产品原型,Reflex 都提供了一条优雅而高效的路径。

2025-07-22 00:00:00 523

原创 创世之舞的终章:Kiro,一个正在涌现的“创造操作系统”【3/3】

它不仅仅是代码的集合,更是思想的架构,是人与AI共舞的舞台。:一个超越传统软件开发工具的概念,它提供了一套完整的框架和机制,用于系统性地引导和管理从概念到实现的全过程,将人与AI的智能融合,以实现更高质量、更有效率的创造。promptingKiro的设计,是对这个日益复杂、人与AI共存的时代的一次深刻回应。它雄辩地证明,最高效的创造模式,或许不是让AI代替我们思考,而是构建一个能让我们与AI的框架。它不再仅仅是关于如何写出更好的代码,而是关于如何建立一个更好的、更可靠的、更具远见的。

2025-07-22 00:00:00 382

原创 知识的迷宫:从图谱路径中唤醒医疗领域的超级智能

🌍想象一下,你正漫步在一个巨大的图书馆里,每本书不是孤立的,而是通过无数隐形的丝线连接成网。这些丝线代表关系,书籍则是概念——这就是知识图谱(KG)的魅力。在这个故事中,我们的主角是医疗领域的超级智能,它不是从天而降的万能神,而是从底层一步步构建起来的,就像一棵大树从种子发芽,根系深入土壤,枝叶伸向天空。

2025-07-21 22:48:39 804

原创 代码的魔法交响曲:对比强化学习如何让GPU舞动起来

想想看,这就好比让一个新手厨师通过不断尝试菜谱,并根据食客的反馈(速度就是反馈)来改进,最终成为米其林大厨,而不需要人类专家的指点。简单来说,就像教孩子区分苹果和香蕉,不仅说“这是苹果”,还强调“这个不像香蕉,因为它没有弯曲”。算法很简单:初始化微调后的模型M0,然后迭代N次生成一批CUDA代码,评估每个的执行性和正确性,只保留成功的,用它们训练模型。每个阶段都像故事中的章节,层层递进,最终让模型从菜鸟变成优化大师。幽默地说,这就像一个机器人厨师自己尝试菜谱,扔掉失败的,只保留成功的,最终菜单越来越丰富。

2025-07-21 22:36:13 746

原创 CrewAI:超越编排,打造最强大的代理式AI平台

CrewAI 旨在构建一个超越传统编排(Orchestration)的代理式AI(Agentic AI)平台,致力于成为市场上最强大的解决方案。其核心愿景是帮助企业从简单的概念验证(Proof of Concept)阶段,发展到在生产环境中部署和管理数百甚至数千个代理工作流,最终实现“代理原生”(agent-native)的组织形态。这意味着CrewAI不仅仅关注单个代理或任务的自动化,而是着眼于通过多代理协作来处理复杂、关键的业务流程,从而深刻改变企业的运营方式。

2025-07-21 21:27:40 607

原创 无用户名登录:PassKey 与 WebAuthn 的深度解析

*PassKey(通行密钥)**是一种基于公钥密码学的新型数字凭证,旨在替代传统的用户名和密码登录方式,提供更安全、更便捷的身份验证体验。其核心思想是利用存储在用户设备(如智能手机、电脑或专用安全密钥)上的非对称密钥对进行身份验证。私钥安全地存储在用户设备本地,并通过生物识别(如指纹、面部识别)或设备PIN码、屏幕锁定图案等方式进行保护;公钥则注册到用户要登录的在线服务(依赖方,Relying Party)。

2025-07-21 20:07:03 701

原创 Roo-Code项目架构与设计思想深度解析

Roo-Code是一个基于VSCode的AI编程助手扩展,它通过集成多种AI模型和服务,为开发者提供智能代码辅助、项目理解、任务自动化等功能。项目采用现代化的TypeScript架构,体现了高度的模块化、可扩展性和工程化思维。Roo-Code项目展现了现代软件工程的最佳实践,通过清晰的架构分层、完善的测试体系、灵活的扩展机制,构建了一个既强大又易用的AI编程助手。其MCP协议的实现为AI工具集成提供了标准化方案,代码索引系统展示了如何高效处理大规模代码库,国际化架构证明了全球化软件的设计方法。

2025-07-21 20:00:00 673

原创 RepVGG:结构重参数化原理、实现与性能对比分析

RepVGG 通过其独特的结构重参数化技术,在模型设计领域带来了新的视角和显著的优势。它不仅继承了 VGG 式简单结构的优点,还通过训练时的多分支设计克服了其训练困难的问题,最终在多个方面展现出卓越的性能。

2025-07-21 20:00:00 959

原创 Swift 6、TypeScript 和 Python 的 async/await 机制异同

TypeScript 和 Python 类似,事件循环驱动, excels 在 web/I/O,但 CPU 时需小心阻塞。Async/await 是一种编程模式,用于处理异步操作(如网络请求、文件读写或延时任务),让代码看起来像同步代码一样线性易读,同时避免阻塞程序的执行流。TypeScript 是 JavaScript 的超集,它的 async/await 直接基于 JS(EcmaScript 2017 引入)。这些 Demo 展示:三者都能并发执行,总时间短(非 5s),证明非阻塞和并发益处。

2025-07-21 00:00:00 631

原创 Kiro的灵魂:与“异类智能”的共生协议【2/3】

如果说“三相协议”是Kiro的骨骼,确保了软件开发的结构与秩序,那么它与AI的深度、透明协作,则是其流淌的血液和跳动的灵魂。Kiro并非将AI视为一个简单的代码打字机,而是将其提升为一个贯穿始终的、理性的“共生伙伴”。这种共生关系的设计,在(AI推理)和prompting(提示策略)这两个目录的文档中,得到了淋漓尽致的展现。:指与人类智能在本质上存在差异,但能够进行有效协作的非人类智能体,例如AI。

2025-07-21 00:00:00 1002

原创 大型语言模型的“白日梦”机制:Day-Dreaming Loop (DDL) 算法及其意义

大型语言模型(LLM)的“白日梦”机制,特别是通过Day-Dreaming Loop (DDL) 算法,旨在赋予LLM类似人类默认模式网络(DMN)的自发思考和创新能力。DDL通过在后台持续探索概念间的非显性联系,筛选有价值的新知并反馈至模型记忆,从而克服当前LLM在自主创新和产生真正新颖见解方面的局限。然而,其实现面临“白日梦税”等显著的计算成本挑战,但其战略意义在于可能推动AI实现根本性创新并构建技术壁垒。

2025-07-21 00:00:00 644

原创 Redis 8.0 新特性深度解析与TypeScript实战:构建智能论坛系统

Redis 8.0 版本带来了多项重大更新,旨在提升性能、扩展功能,并更好地支持现代应用,特别是人工智能(AI)和机器学习(ML)场景。其中,RediSearch 模块的深度集成以及全新的 Vector Set 数据类型的引入,是本次更新的核心亮点。这些新特性不仅增强了 Redis 作为高性能键值存储的能力,更将其提升为一个功能更全面的数据平台,能够处理复杂的搜索和相似性匹配任务。Redis 8.0 在性能方面也取得了显著进步,包括命令执行速度的提升、吞吐量的增加以及复制效率的优化。

2025-07-20 15:47:59 985

原创 记忆的迷宫:大型语言模型中从碎片到永恒的智慧之旅

回顾这场记忆之旅,MemOS填补了LLMs基础设施的空白,提供统一抽象和管理框架,提升推理连贯性、适应性和可扩展性。它预见一个以模块化记忆为核心的生态,支持去中心化记忆市场。未来方向包括跨LLM记忆共享(扩展MIP协议)、自演化MemBlocks(基于反馈优化)和可扩展市场(资产交易)。MemOS将LLMs从静态生成者转化为永续代理,我们期待社区协作,使记忆成为AI时代的首要资源。MIP是Memory Interchange Protocol,确保跨模型兼容。

2025-07-20 12:20:59 637

原创 将Manus的上下文工程经验应用于企业级AI代理:以Python技术栈为例

要将《AI代理的上下文工程:构建Manus的经验教训》一文中的经验教训应用于特定场景或技术栈,关键在于深入理解其核心原则,如**保持提示稳定以优化KV缓存命中率、使用上下文感知状态机管理工具调用、利用文件系统或数据库作为外部记忆、通过“复述”或todo列表操纵模型注意力、保留错误信息助力模型自我修正与学习,以及警惕“少样本陷阱”并提供多样化示例**。然后,针对目标应用场景(如企业内部知识问答系统)的具体需求和挑战,选择合适的技术栈(如Python生态中的LangChain框架、Flask/Django

2025-07-20 10:42:43 887

原创 上下文工程的未来蓝图:从Manus的航程到代理时代的黎明

想象一下,你是一位探险家,站在一个广阔的数字海洋边缘,手里握着一艘名为Manus的船。这艘船不是普通的木船,而是由人工智能编织而成,靠着上下文工程的魔法风帆前行。在这个故事中,我们将跟随Manus的创造者Yichao ‘Peak’ Ji的足迹,探索如何通过巧妙的上下文设计,让AI代理从笨拙的学徒变成敏捷的航海家。就像一艘船在汹涌的海浪中寻找最佳航道,我们将一步步揭开那些隐藏在代码和提示背后的秘密,确保每一次转舵都充满智慧和惊喜。

2025-07-20 08:43:00 944

原创 智慧的记忆:从混沌到秩序的上下文工程之旅

上下文工程是一门新兴的科学,却已是智能代理系统的核心支柱。无论模型多么强大,没有精心设计的上下文,它们都无法充分发挥潜力。Manus的开发历程表明,上下文不仅是信息的载体,更是代理行为的“导演”——它决定代理的效率、鲁棒性和扩展性。通过 KV 缓存优化、工具掩码、文件系统记忆、注意力操控、错误保留和多样性设计,Manus在数百万用户的实际测试中不断迭代,找到了一条通向高效代理的道路。这些经验并非通用的真理,但它们为其他开发者提供了一盏明灯,避免在上下文工程的迷雾中迷失方向。

2025-07-20 08:05:44 1157

原创 `Copilot for Xcode.app`架构剖析:一个纯粹的“控制面板”

在我们深入探索 Copilot for Xcode 的多进程架构时,除了作为“大脑”的和作为“信使”的,用户直接与之交互的主应用程序同样扮演着至关重要的角色。它的设计思想和架构选择,完美诠释了现代 macOS 应用如何实现关注点分离,提供流畅的用户体验。本文将聚焦于这个目录下的代码,从设计思想和架构层面,详细剖析这个用户界面的核心职责与实现方式。

2025-07-20 00:00:00 849

原创 Swift 5, TypeScript, and Python Async/Await 机制对比分析

在现代软件开发中,异步编程扮演着至关重要的角色。随着应用程序日益复杂,用户对响应速度和系统吞吐量的要求也越来越高。无论是处理高并发的网络请求、执行耗时的 I/O 操作(如文件读写、数据库访问),还是在不阻塞用户界面的前提下运行后台任务,异步编程都是实现这些目标的关键技术。传统的同步编程模型在执行长时间操作时会阻塞当前线程,导致应用程序无法响应其他请求或用户交互,从而造成糟糕的用户体验和低效的资源利用。

2025-07-20 00:00:00 925

原创 创世之舞:Kiro如何编织未来软件的生命图谱【1/3】

在浩瀚的数字宇宙中,我们正目睹一场前所未有的创世之舞。这并非关于星辰的诞生,而是关于智能与智慧的交融,关于软件生命形态的演化。传统意义上的“软件项目”,曾是人类智慧的结晶,却也常受混沌与浪费的困扰。需求如流沙般变幻,设计在代码成型后才显露缺陷,开发者在无尽的“返工”泥沼中挣扎。然而,一种名为Kiro的新型系统,正悄然改变这一切。它不仅仅是一个开发框架,更是一个精心设计的、用于引导人与AI进行共同创造的“生命支持系统”。

2025-07-20 00:00:00 689

原创 TypeScript AOT 编译器调研报告

AOT(Ahead-of-Time)编译,即提前编译,是一种在程序执行之前将源代码或中间代码完全编译成目标机器码的技术。与 JIT(Just-in-Time)编译在运行时动态编译不同,AOT 编译在应用程序运行前就已经完成了编译工作,生成可直接执行的机器码或优化过的字节码。这种预先编译的方式带来了多方面的优势。首先,AOT 编译能够显著提升应用的启动速度。由于代码已经预先编译为机器码,运行时无需再进行编译过程,从而减少了初始延迟。其次,AOT 编译通常能带来更好的运行时性能。

2025-07-19 21:02:57 858

原创 神经场与上下文工程的未来

神经场代表了上下文工程从离散到连续的根本性跃迁。通过拥抱基于场域的思维,我们打开了新的可能性,创造出更加灵活、更加持久、更加符合意义自然涌现规律的上下文系统。正如爱因斯坦所说:"场域是粒子的唯一支配机构。"在人工智能的世界中,我们正在发现:场域可能就是智能的唯一支配机构。从单个原子提示到分子化的少样本学习,从细胞化的记忆系统到器官化的多智能体协作,从神经生物学系统到神经场域——我们的旅程见证了人工智能从机械模仿向生物启发的深刻转变。

2025-07-19 19:13:58 904

原创 AG-UI (Agent-User Interaction Protocol) 调研报告

CopilotKit 是一个旨在帮助开发者将 AI 驱动的功能(如聊天机器人、代码辅助、内容生成等)快速集成到其应用程序中的开源框架和工具集。它提供了一系列 React 组件、Hooks 和 API,使得前端开发者可以相对容易地在他们的应用中构建类似“Copilot”的交互体验。CopilotKit 的核心目标是简化 AI 能力的应用,降低开发门槛,让开发者能够专注于构建核心业务逻辑,而不是从零开始实现复杂的 AI 集成。

2025-07-19 18:59:35 830

原创 代码之谜:Claude Code v1.0.33的逆向工程启示录

分层多智能体架构是一种将复杂任务分解为多个独立模块的系统设计,每个模块由一个或多个智能体负责处理。这种架构的优势在于模块化、可扩展性和容错性,特别适合需要并发处理和动态调度的场景。这种设计带来的好处显而易见:相比单一智能体系统,Claude Code的多智能体架构在处理。

2025-07-19 18:36:01 883

【WordPress开发】为特定样式段落添加交互功能的技术实现与最佳实践:前端与编辑器一致性保障方案

内容概要:本文详细介绍了在WordPress中为特定样式段落添加交互功能的实现方案。首先,通过CSS类名或内容特征精确选择目标段落,确保交互功能作用于正确的元素。其次,利用`wp_enqueue_script`机制规范加载自定义JavaScript,确保脚本的安全性和依赖关系管理,并采用事件委托技术处理动态生成的段落元素。接着,文章阐述了如何实现常见的交互行为,如内容显隐、样式切换、异步加载更多内容及触发自定义JavaScript函数。最后,强调了确保编辑器与前端一致性的重要性,提出了使用Interactivity API、创建自定义Gutenberg块等解决方案,并介绍了测试与调试的方法。 适合人群:具备一定WordPress开发经验的开发者,尤其是希望为网站内容添加高级交互功能的中级开发者。 使用场景及目标:①为特定样式的段落添加交互功能,如内容显隐、样式切换等;②通过异步加载提升用户体验;③确保编辑器与前端的一致性,使交互功能在编辑器和前端都能正常工作;④掌握调试技巧,确保交互功能的稳定性。 阅读建议:由于涉及较多WordPress开发细节和技术栈,建议读者在学习过程中结合实际项目进行实践,尤其要注意代码的模块化和可维护性。同时,充分理解WordPress的钩子系统和JavaScript事件处理机制,以便更好地应用文中提到的技术方案。

2025-07-19

【Misskey 技术架构深度调研】基于ActivityPub协议的去中心化社交网络平台设计与实现:前端Vue.js、后端Node.js及NestJS、数据库PostgreSQL、缓存Redis、任务

内容概要:Misskey 是一个基于 ActivityPub 协议的去中心化开源社交网络平台,融合了现代 Web 开发技术栈。前端采用 Vue.js 构建,辅以自研的路由和状态管理库,并通过 Vite 进行构建优化。后端基于 Node.js 和 NestJS 框架,使用 Fastify 作为 HTTP 服务器,PostgreSQL 作为主数据库,Redis 用于缓存、任务队列和实时通信。Misskey 支持通过 Docker 实现容器化部署,并支持水平扩展。其核心功能模块如通知系统、实时聊天和插件机制均体现了其分布式和可扩展的设计理念。此外,Misskey 在 ActivityPub 协议的集成上投入了大量精力,确保其安全性、兼容性和可扩展性。 适合人群:对去中心化社交网络和现代 Web 技术栈感兴趣的开发者和技术爱好者,尤其是具备一定编程基础并希望深入了解分布式系统设计和实现的中高级开发人员。 使用场景及目标:①理解 ActivityPub 协议在去中心化社交网络中的应用;②学习如何在 Vue.js 和 NestJS 框架下构建高性能、可扩展的应用;③掌握 Redis 和 Fastify 在后端开发中的最佳实践;④探索 Misskey 插件机制和实时通信功能的实现。 阅读建议:此资源不仅介绍了 Misskey 的技术架构和实现细节,还涵盖了从协议集成到具体功能模块的深入探讨。建议读者在学习过程中结合实际代码和相关文档进行实践,并关注社区动态以获取最新的技术和实践经验。

2025-07-15

### PIN AI 深度研究报告总结

内容概要:PIN AI致力于构建一个去中心化、以用户为中心的个人人工智能(Personal AI)开放平台,核心理念是将数据主权归还给用户并通过本地化AI处理确保隐私安全。该平台通过PIN Onchain协议、数据连接器、本地LLM(大型语言模型)、守护模型和可信执行环境(TEE)等创新技术架构,挑战大型科技公司的数据垄断,提供高度个性化且真正私密的AI服务。PIN AI强调用户的个人数据应存储在本地设备并加密保护,只有在用户明确授权的情况下才能用于模型训练或服务提供。平台鼓励开发者参与构建和优化个人AI应用,旨在推动“代理经济”的发展,使用户能够从其数据中获益。 适用人群:对数据隐私高度敏感、希望拥有更可控AI助手的个人用户,以及寻求在保护用户隐私前提下利用数据进行创新的开发者和企业。 使用场景及目标:①作为高度个性化、隐私安全的个人AI助理,提供定制化服务,如购物、旅行规划、财务管理等;②构建“代理经济”,让用户通过AI代理自动完成复杂任务;③实现数据货币化,让用户通过贡献数据获得代币奖励;④在金融、医疗等敏感行业提供安全的数据管理和个性化服务。 其他说明:PIN AI的创始团队由区块链、人工智能、密码学和创业领域的专业人士组成,获得a16z Crypto、Hack VC等顶级风投支持。平台面临技术实现、市场竞争、用户习惯转变和监管不确定性等挑战,但其创新的技术架构和商业模式具有广阔的发展前景。

2025-07-15

FOUNDATION AGENTS的进展与挑战 从脑启发智能到进化、协作和安全的系统 ### 人工智能大型语言模型驱动的智能体模块化架构及其安全性和进化机制综述

内容概要:本文是一篇关于智能体(agents)的综述,探讨了从脑启发智能到进化、协作和安全系统的进展与挑战。文章首先介绍了智能体的模块化设计,涵盖认知、感知、行动、记忆、世界建模、情感、目标和奖励等核心组件,强调了这些模块与人类大脑功能的相似性。接下来,文章探讨了智能体的自我增强机制,包括自适应学习、反馈驱动的改进和持续知识集成,以适应动态环境。随后,文章讨论了多智能体系统的协作与进化,强调了集体智慧和适应性决策的重要性。最后,文章详细分析了构建安全和有益的AI系统的必要性,提出了内在和外在安全威胁的缓解策略。文章还探讨了未来的研究方向,包括多模态感知、长上下文建模、幻觉缓解策略等。 适用人群:本文适合研究人员、学生、政策制定者和行业从业者,尤其是对AI智能体、大型语言模型(LLMs)及其应用感兴趣的读者,以及对未来社会中人类与AI共存感兴趣的群体。 使用场景及目标:①理解智能体的模块化设计和其与人类认知的相似性;②学习智能体的自我增强机制和持续学习策略;③探讨多智能体系统的协作模式和集体智慧;④掌握构建安全、有保障和有益的AI系统的策略和技术。 其他说明:本文不仅提供了关于智能体的全面概述,还鼓励读者提出新问题并探索这一领域的研究空白。文章强调了智能体设计不仅要追求强大和高效,还要具备适应性、伦理性和与人类社会的深度一致性。通过综合不同学科的见解,本文为智能体的发展提供了一个前瞻性的路线图。

2025-04-09

Qwen2.5-Omni 论文Word格式

Qwen2.5-Omni 论文Word格式

2025-03-27

不要再过度思考了:一项关于 对大型语言模型的有效推理

不要再过度思考了:一项关于 对大型语言模型的有效推理

2025-03-23

TokenButler- Token Importance is Predictable.docx

大型语言模型(LLMs)依赖于键值(KV)缓存来存储标记历史,从而实现标记的有效解码。随着KV缓存的增长,它成为主要的内存和计算瓶颈。然而,有机会缓解这一瓶颈,特别是因为先前的研究表明,只有很小一部分标记在每个解码步骤中都有意义地贡献。寻找这些关键标记的主要挑战在于它们是动态的,并且严重依赖于输入查询。现有的方法要么冒着质量风险永久驱逐标记,要么保留完整的KV缓存,但在生成时依赖于检索标记块(页面),在密集、内容丰富的任务中失败。此外,许多现有的KV缓存稀疏方法依赖于对标记重要性的不准确代理。为了解决这些限制,我们引入了TokenButler,这是一个高粒度、查询感知的预测器,它学会了识别这些关键标记。通过训练一个轻量级预测器,其参数开销不到1.2%,TokenButler根据标记的上下文预测重要性进行优先排序。这提高了困惑度和下游准确性,相对于估计标记重要性的最新方法提高了超过8%。我们在一个新颖的合成小上下文共指检索任务上评估了TokenButler,展示了接近或达到神谕准确度的性能。

2025-03-11

现有的长文本生成方法主要集中在从短输入生成长文本上,忽略了长输入和长输出任务 这类任务有许多实际应用,但缺乏可用的基准 此外,随着输入长度的增加,现有方法不可避免地会遇到“中间丢失”现象

现有的长文本生成方法主要集中在从短输入生成长文本上,忽略了长输入和长输出任务。这类任务有许多实际应用,但缺乏可用的基准。此外,随着输入长度的增加,现有方法不可避免地会遇到“中间丢失”现象。在本文中,我们首先介绍了一个长输入和长输出基准(LONGINOUTBENCH),包括一个合成数据集和一个全面的评估框架,解决了缺失基准的挑战。然后我们开发了检索增强型长文本写手(RALWRITER),它检索并重述了重要但被忽视的内容,通过构建明确的提示来缓解“中间丢失”问题。最后我们使用提出的LONGINOUTBENCH来评估我们的RALWRITER与可比基线,结果证明了我们方法的有效性。我们的代码已在 https://github.com/OnlyAR/RAL-Writer 发布。

2025-03-11

《从塔楼到尖顶:一次语音魔法的奇幻旅程》

当科技与语言交相辉映,当文本与语音在大语言模型中共舞,我们便迎来了一个全新的时代。本文带您走进SPIRE的世界——一个从纯文本LLM(大语言模型)进化而来的多模态奇迹,通过引入离散语音单元(DSU),使得模型不仅精通翻译,更能准确识别和转换语音。下面,让我们用轻松幽默的笔触来细诉这一激动人心的旅程,探索这座由TOWER到SPIRE的高塔构筑,如何在语音与文本间架起一座坚实的桥梁。

2025-03-14

论文译文:LLM Maybe LongLM: SelfExtend LLM Context Window Without Tun

论文译文:LLM Maybe LongLM: SelfExtend LLM Context Window Without Tun

2024-07-10

巨型语言模型的 8 位量化:LLM.int8() 中文版论文

LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., 2022) 中文版论文

2024-06-12

LLM+Mamba具有选择性状态空间的线性时间序列建模

Mamba具有选择性状态空间的线性时间序列建模 论文中文版

2024-01-01

Meta的Pearl强化学习库入门(中文版).pdf

帮您快速入门Pearl强化学习库。

2023-12-26

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除