Q: 这篇论文试图解决什么问题?
A: 这篇论文试图解决的问题是如何有效地扩展大型语言模型(LLMs)以处理长上下文的任务。具体来说,它关注以下几个关键挑战: 1. 长指令跟随数据集的缺失:为了对LLMs进行监督式微调(SFT),需要有长指令跟随数据集,但目前缺乏这样的数据集以及构建这类数据的方法。 2. 训练效率问题:长上下文数据的长度分布不均,这在多GPU设置中显著降低了传统批处理方法的训练效率,因为处理较短输入的GPU需要等待处理较长输入的GPU完成任务。 3. 长上下文能力的评估:需要一个强大的基准来评估LLMs在处理真实世界长查询时的长上下文能力。 为了应对这些挑战,论文提出了LongAlign,这是一个包含数据构建、训练方法和评估基准的解决方案。通过这些方法,LongAlign旨在提高LLMs在处理长达64k个标记的上下文时的性能,同时保持它们处理短、通用任务的能力。
Q: 有哪些相关研究?
A: 相关研究主要集中在以下几个方面: 1. 长上下文扩展(Long Context Scaling):研究如何扩展现有LLMs的有限上下文长度以支持长上下文任务。这些方法可以分为两类:需要在更长序列上进行微调或持续训练的方法,以及不需要微调的方法。不需要微调的方法通常采用滑动窗口注意力(Sliding Window Attention)或邻近标记压缩(Neighboring Token Compression)等技术来处理长上下文中的位置编码问题。 2. LLM对齐(LLM Alignment):在长上下文扩展之后,重要的是要对模型进行对齐,以确保它能