指数平滑法 Exponential Smoothing
指数平滑法,用于中短期经济发展趋势预测。
1 时间序列分析基础知识
1.1 时间序列分析前提假设
时间序列分析一般假设我们获得的数据在时域上具有一定的相互依赖关系,例如股票价格在t时刻很高,那么在t+1时刻价格也会比较高(跌停才10%);如果股票价格在一段时间内获得稳定的上升,那么在接下来的一段时间内延续上升趋势的概率也会比较大。
1.2 时间序列分析目标
(1)发现这种隐含的依赖关系,并增加我们对此类时间序列的理解;
(2)对未观测到的或者尚未发生的时间序列进行预测。
我们认为时间序列由两部分组成:有规律的时间序列(即有依赖关系)+噪声(无规律,无依赖)。所以,接下来要做的就是过滤噪声:
最简单的过滤噪声的方法是:取平均。
2 平均方法
- 全期平均法:简单的全期平均法是对时间数列的过去数据一个不漏地全部加以同等利用;
- 移动平均法:移动平均法则不考虑较远期的数据,并在加权移动平均法中给予近期资料更大的权重;(如ARIMA)
- 指数平滑法:指数平滑法则兼容了全期平均和移动平均所长,不舍弃过去的数据,但是仅给予逐渐减弱的影响程度,即随着数据的远离,赋予逐渐收敛为零的权数。
也就是说,指数平滑法是在移动平均法基础上发展起来的一种时间序列分析预测法,它是通过计算指数平滑值,配合一定的时间序列预测模型对现象的未来进行预测,其原理是任一期的指数平滑值都是本期实际观察值与前一期指数平滑值的加权平均。利用修匀技术,削弱短期随机波动对序列的影响,使序列平滑化,从而显示出长期趋势变化的规律