Win11 跑通tensorRT

本文介绍了如何在Windows10上安装CUDA12.3、CUDNN和TensorRT8.6,包括VS集成、环境配置步骤,以及处理ONNX模型量化的问题,重点提到YOLov5s示例和使用trtexec工具进行量化过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

cuda_12.3.1_546.12_windows
TensorRT-8.6.1.6.Windows10.x86_64.cuda-12.0
cudnn-windows-x86_64-8.9.7.29_cuda12-archive

准备

1.安装cuda,成功之后文件夹如下图所示
在这里插入图片描述
2.下载cudnn,把cudnn对应的文件放在cuda里面
在这里插入图片描述
3.安装vs
4.安装对应cuda版本的tensorRT

https://developer.nvidia.com/tensorrt-download
在这里插入图片描述
5.opencv安装
编译好
在这里插入图片描述
在这里插入图片描述

打开vs,配置环境

用vs打开tensorRT中sample这个demo,双击sample_onnx_mnist.sln
在这里插入图片描述
打开项目选项,属性,添加include
在这里插入图片描述
添加lib
在这里插入图片描述

直接运行

在这里插入图片描述
遇到的问题:
在这里插入图片描述
解决:
debug就debug里面添加,release就在release里面添加
在这里插入图片描述
tensorRT的sample中,附加依赖项是这样的

kernel32.lib
user32.lib
gdi32.lib
winspool.lib
comdlg32.lib
advapi32.lib
shell32.lib
ole32.lib
oleaut32.lib
uuid.lib
odbc32.lib
odbccp32.lib
%(AdditionalDependencies)
nvinfer.lib
nvinfer_plugin.lib
nvonnxparser.lib
nvparsers.lib
cudnn.lib
cublas.lib
cudart.lib

2.需要开启很大的数组
在这里插入图片描述
3.量化
对onnx模型,进行量化

使用tensorRT
trtexec --onnx=yolov5s.onnx --saveEngine=model_int8.engine --int8 --fp16

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

骨子带刺

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值