python 中模块(model)概念的引入 以及 函数变量的作用域

本文介绍了Python内置模块的使用方法及如何创建自定义模块。同时深入探讨了Python中的作用域概念,包括公共与私有变量的区别及其在代码封装中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python本身就内置了很多非常有用的模块,只要安装完毕,这些模块就可以立刻使用。

我们以内建的sys模块为例,编写一个hello的模块:

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

' a test module '

__author__ = 'Michael Liao'

import sys

def test():
    args = sys.argv
    if len(args)==1:
        print('Hello, world!')
    elif len(args)==2:
        print('Hello, %s!' % args[1])
    else:
        print('Too many arguments!')

if __name__=='__main__':
    test()

第1行和第2行是标准注释,第1行注释可以让这个hello.py文件直接在Unix/Linux/Mac上运行,第2行注释表示.py文件本身使用标准UTF-8编码;

第4行是一个字符串,表示模块的文档注释,任何模块代码的第一个字符串都被视为模块的文档注释;

第6行使用__author__变量把作者写进去,这样当你公开源代码后别人就可以瞻仰你的大名;

以上就是Python模块的标准文件模板,当然也可以全部删掉不写,但是,按标准办事肯定没错。

后面开始就是真正的代码部分。

你可能注意到了,使用sys模块的第一步,就是导入该模块:

import sys

导入sys模块后,我们就有了变量sys指向该模块,利用sys这个变量,就可以访问sys模块的所有功能。

sys模块有一个argv变量,用list存储了命令行的所有参数。argv至少有一个元素,因为第一个参数永远是该.py文件的名称,例如:

运行python3 hello.py获得的sys.argv就是['hello.py']

运行python3 hello.py Michael获得的sys.argv就是['hello.py', 'Michael]

最后,注意到这两行代码:

if __name__=='__main__':
    test()

当我们在命令行运行hello模块文件时,Python解释器把一个特殊变量__name__置为__main__,而如果在其他地方导入该hello模块时,if判断将失败,因此,这种if测试可以让一个模块通过命令行运行时执行一些额外的代码,最常见的就是运行测试。

我们可以用命令行运行hello.py看看效果:

$ python3 hello.py
Hello, world!
$ python hello.py Michael
Hello, Michael!

如果启动Python交互环境,再导入hello模块:

$ python3
Python 3.4.3 (v3.4.3:9b73f1c3e601, Feb 23 2015, 02:52:03) 
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import hello
>>>

导入时,没有打印Hello, word!,因为没有执行test()函数。

调用hello.test()时,才能打印出Hello, word!

>>> hello.test()
Hello, world!

作用域

在一个模块中,我们可能会定义很多函数和变量,但有的函数和变量我们希望给别人使用,有的函数和变量我们希望仅仅在模块内部使用。在Python中,是通过_前缀来实现的。

正常的函数和变量名是公开的(public),可以被直接引用,比如:abcx123PI等;

类似__xxx__这样的变量是特殊变量,可以被直接引用,但是有特殊用途,比如上面的__author____name__就是特殊变量,hello模块定义的文档注释也可以用特殊变量__doc__访问,我们自己的变量一般不要用这种变量名;

类似_xxx__xxx这样的函数或变量就是非公开的(private),不应该被直接引用,比如_abc__abc等;

之所以我们说,private函数和变量“不应该”被直接引用,而不是“不能”被直接引用,是因为Python并没有一种方法可以完全限制访问private函数或变量,但是,从编程习惯上不应该引用private函数或变量。

private函数或变量不应该被别人引用,那它们有什么用呢?请看例子:

def _private_1(name):
    return 'Hello, %s' % name

def _private_2(name):
    return 'Hi, %s' % name

def greeting(name):
    if len(name) > 3:
        return _private_1(name)
    else:
        return _private_2(name)

我们在模块里公开greeting()函数,而把内部逻辑用private函数隐藏起来了,这样,调用greeting()函数不用关心内部的private函数细节,这也是一种非常有用的代码封装和抽象的方法,即:

外部不需要引用的函数全部定义成private,只有外部需要引用的函数才定义为public。

<think>我们被要求回答关于Python函数优点的问题。根据引用[3]中提到的内容,函数Python中有多种优势,包括代码重用、提高可读性、减少错误等。同时,引用[1]提到函数式编程可以编写出更高效、清晰且易于维护的代码。此外,引用[2]和[4]分别涉及嵌套函数和lambda函数,这些也是函数的重要组成部分。因此,我们可以从多个角度来阐述Python函数的优势。 回答结构: 1. 引言:简述函数的重要性。 2. 分点列出使用函数的优势和好处,并适当结合引用内容。 3. 在适当的地方使用代码示例(如lambda函数)来增强说明。 4. 总结。 5. 生成相关问题。 注意:引用[3]是主要关于函数优点的引用,因此我们将重点参考它。同时,引用[4]中lambda函数的例子也可以用来展示函数的一种简洁形式。</think>### Python 中使用函数的优势与好处 在 Python 开发中,函数是代码组织的核心单元,其优势主要体现在以下方面: #### 1. **提高代码复用性** - 将重复逻辑封装成函数后,可在多处调用,避免代码冗余[^3]。 - **示例**:封装数据清洗逻辑 ```python def clean_text(text: str) -> str: """移除特殊字符并转换为小写""" return re.sub(r'[^\w\s]', '', text).lower() # 多处复用 cleaned_title = clean_text(raw_title) cleaned_content = clean_text(raw_content) ``` #### 2. **增强代码可读性** - 通过函数名明确表达功能意图,使代码逻辑更清晰[^1][^3]。 - **对比示例**: ```python # 未使用函数(可读性差) if len([x for x in data if x % 2 == 0]) > 5: ... # 使用函数(语义清晰) def count_even_numbers(data: list) -> int: return len([x for x in data if x % 2 == 0]) if count_even_numbers(data) > 5: ... ``` #### 3. **简化复杂逻辑** - 通过嵌套函数分解复杂任务(引用[2]),每层函数专注单一职责[^2][^3]。 - **示例**:多层数据处理 ```python def process_data(data): def validate(input_list): ... # 内部验证函数 def transform(input_list): ... # 内部转换函数 validated = validate(data) return transform(validated) ``` #### 4. **减少错误传播** - 局部作用域隔离变量(引用[3]),避免全局变量污染[^3]。 - **关键机制**: - 函数内定义的变量为局部变量,与外部同名变量互不影响 - 通过参数传递明确数据依赖关系 ```python x = 10 # 全局变量 def modify(): x = 20 # 局部变量,不影响全局x return x print(modify()) # 输出 20 print(x) # 输出 10(全局变量未改变) ``` #### 5. **支持高效函数式编程** - 结合 `lambda` 和内置函数实现简洁操作(引用[4])[^4]: ```python # 使用 lambda 快速过滤数据 even_numbers = list(filter(lambda x: x % 2 == 0, [1, 2, 3, 4])) ``` - 函数作为一等公民,可被赋值、传递或作为返回值[^1]: ```python def multiplier(factor): return lambda x: x * factor # 返回函数 double = multiplier(2) print(double(5)) # 输出 10 ``` #### 6. **提升调试与维护效率** - 问题定位:错误通常发生在特定函数内,缩小排查范围[^3]。 - 修改安全:修改函数内部实现时,只要接口不变,调用方无需调整。 - **示例**:优化算法时仅需修改函数体 ```python # 原始实现 def sum_squares(n): return sum(i*i for i in range(1, n+1)) # 优化后(调用方代码不变) def sum_squares(n): return n*(n+1)*(2*n+1)//6 ``` #### 7. **促进模块化设计** - 函数作为基础模块,支持构建复杂系统(引用[5]中 `kmeans` 函数的实现思想)[^5]。 - **典型应用**: ```python # 机器学习流程分解 def load_data(path): ... def preprocess(raw_data): ... def train_model(features): ... def evaluate(model): ... ``` ### 总结 Python 函数通过**封装、复用、隔离**三大核心机制,显著提升代码的**可读性、健壮性和可维护性**(引用[1][3])[^1][^3]。无论是简单脚本还是大型项目,合理使用函数(包括常规函数、嵌套函数和 `lambda`)都是编写高质量代码的关键实践。 --- ### 相关问题 1. Python 中如何正确使用全局变量和局部变量以避免冲突? 2. `lambda` 函数与普通函数在适用场景上有何区别? 3. 嵌套函数在闭包中的应用有哪些典型场景? 4. Python 装饰器如何利用函数作为一等对象的特性?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值