dt = '2022-05-01'
j=292917
for i in tqdm(range(31)):
# 获取轨迹、揽件、派件数据
df_liushuai = df_33[df_33['gpsDate'] == dt]
# 获取liushuai当天的gps轨迹
df_liushuai = df_liushuai.sort_values(by='gps_time')
df_liushuai = df_liushuai.loc[:, ['lat_wgs', 'lon_wgs']].values
# 将轨迹添加到图中
m0 = folium.Map([df_33['lat_wgs'].mean(), df_33['lon_wgs'].mean()], zoom_start=30) # 中心区域的确定
groups = folium.FeatureGroup('momomomo')
df_liushuai = df_liushuai.tolist()
# 将product的轨迹打印出来
if df_liushuai != []:
for loc in df_liushuai:
folium.Circle(loc, radius=2, fill=True, color='red', fill_opacity=1).add_to(m0)
folium.PolyLine( # polyline方法为将坐标用实线形式连接起来
df

该博客主要展示了如何利用Python的pandas和Folium库来对轨迹数据进行处理和可视化。代码中首先定义了日期,然后遍历一个月的数据,获取特定日期的轨迹,并对轨迹点进行标记和连线。同时,还添加了边界区域的橙色线条。最后,将每一天的可视化结果保存为HTML文件。
最低0.47元/天 解锁文章
2684

被折叠的 条评论
为什么被折叠?



