小白蒋博客
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
python处理excel表格,几个表格提取整理成一个
需求:下面4个sheet整理成一个sheet 转换结果如下: 解决方案:用python调用pandas库处理 用jupyter notebook写的: import pandas as pd import xlrd filename1 = "SF072_pin_dig_af" filename2 = "SG071_081_pin_dig_af" filename3 = "HF072_pin_dig_af" filename4 = "HL130_pin_dig_af" li_file1 = []原创 2021-08-17 11:00:29 · 483 阅读 · 0 评论 -
python处理excel表格,得到里面内容的横坐标和纵坐标
作者:小白蒋 需求: 根据excel的表格,得到里面每个数的横坐标和纵坐标,表格如下: 期望结果如下: 解决方法: 用python处理表格,代码如下,用jupyter notebook写的: import pandas as pd import xlrd def f_w(): li = [] li_2 = [] li_3 = [] df = pd.read_excel('D:/dele_xls/gpio_mux.xlsx',sheet_name='Sheet1') #原创 2021-01-31 15:38:24 · 2668 阅读 · 2 评论 -
pandas实战二、字典格式数据转成DataFrame格式(有行名、有列名)
pandas -V 0.25.1 1、需求 在用python识别PDF文件、提取数据的时候,得到一组字典数据,为了更方便的保存,把字典数据转化成DataFrame格式(有行名、有列名)。 数据 dict1 = {'报告1': ['a', 'b', 'c', '13', 'd', '2018-05-11'], '报告2': ['f', 'g', 'h', '13', 'j', '2018-05...原创 2019-12-31 14:10:55 · 1281 阅读 · 1 评论 -
pandas实战一、字典格式数据转成DataFrame格式(有列名)
pandas -V 0.25.1原创 2019-12-31 14:02:46 · 1767 阅读 · 0 评论 -
七、pandas学习,pandas画图
pandas -V 0.25.3 numpy -V 1.17.4 python -V 3.8.0 matplotlib -V 3.1.2 import pandas as pd import numpy as np import matplotlib.pyplot as plt # 随机生成1000个数据 data = pd.Series(np.random.randn(1000), index...原创 2019-12-27 14:20:11 · 158 阅读 · 0 评论 -
六、pandas学习,合并数据,用concat()、append()
pandas -V 0.25.3 numpy -V 1.17.4 python -V 3.8.0 1、DataFrame纵向合并,pd.concat() # 数据的合并处理,用concat import pandas as pd import numpy as np # 定义资料集 df1 = pd.DataFrame(np.ones((3,4))*0,columns=['a','b','c'...原创 2019-12-27 14:15:35 · 257 阅读 · 0 评论 -
五、pandas学习,读取csv数据,资料存取成pickle,读取pickle数据
pandas -V 0.25.3 numpy -V 1.17.4 python -V 3.8.0 1、读取csv,用pd.read_csv() import pandas as pd import numpy as np data = pd.read_csv('student.csv') print(data) 2、将资料存取成pickle(df.to_pickle()),读取pickle数据...原创 2019-12-27 13:57:15 · 1623 阅读 · 0 评论 -
四、pandas学习,处理丢失数据,删除空数据,替换空数据,判读是否存在空数据
pandas -V 0.25.3 numpy -V 1.17.4 python -V 3.8.0 生成假数据 import pandas as pd import numpy as np # 处理丢失数据 #创建DataFrame dates = pd.date_range('20191227',periods=6) df = pd.DataFrame(np.arange(24).reshap...原创 2019-12-27 13:50:01 · 308 阅读 · 0 评论 -
三、pandas学习,DataFrame数据,修改指定位置值,根据条件修改值,添加新列
pandas -V 0.25.3 numpy -V 1.17.4 python -V 3.8.0 1、指定位置修改值 import numpy as np import pandas as pd # 创建pandas的DataFrame dates = pd.date_range('20191227','6') df = pd.DataFrame(np.arange(24).reshape((6...原创 2019-12-27 13:32:02 · 18219 阅读 · 4 评论 -
二、pandas学习,pandas的DataFrame提取数据,loc、iloc、ix使用,判断提取数据,获得DataFrame某列数据
pandas -V 0.25.3 numpy -V 1.17.4 python -V 3.8.0 1、生成DataFrame import pandas as pd import numpy as np # 生成DatetimeIndex dates = pd.date_range('20191227',periods=6) df = pd.DataFrame(np.arange(24).re...原创 2019-12-27 13:20:25 · 3445 阅读 · 0 评论 -
一、pandas学习,pandas与numpy区别,pandas两个数据结构,Series和DataFrame,DataFrame取值、查看索引、数据总结、转置、排序
pandas -V 0.25.3 numpy -V 1.17.4 python -V 3.8.0 1、pandas与numpy的区别 如果说numpy是列表形式的,没有数值标签; 但是pandas就可以说是字典形式的,有数值标签; pandas是基于numpy构建的,让numpy为中心的应用变得更简单。 2、pandas两个数据结构 pandas主要有两个数据结构: Series和DataFram...原创 2019-12-27 12:56:05 · 962 阅读 · 0 评论 -
五、numpy生成矩阵,矩阵的切割和复制(split),不等量分割(array_split),其它分割方式(vsplit和hsplit),矩阵的复制
python -V3.7 numpy -V 1.17 背景 继上一篇学完矩阵的合并,矩阵增加维度,用concatenate合并多个矩阵,本文继续学习矩阵的切割和复制。 1、纵向等量分割,使用split() import numpy as np A = np.arange(12).reshape((3,4)) print(A) # [[ 0 1 2 3] # [ 4 5 6 7] #...原创 2019-12-25 12:24:01 · 1509 阅读 · 0 评论 -
四、numpy生成矩阵,矩阵的合并,矩阵增加维度,用concatenate合并多个矩阵
python -V3.7 numpy -V 1.17 背景 继上一篇学完矩阵的索引、取某行某列元素、多维矩阵转为一行数列,本文继续学习矩阵的合并。 1、两个矩阵上下合并,用vertical stack,函数就是vstack import numpy as np # 矩阵的合并,用vertical stack,上下合并 A = np.array([1,1,1]) B = np.array([2,2...原创 2019-12-25 12:11:53 · 3413 阅读 · 0 评论 -
三、numpy生成矩阵,矩阵索引(取某个元素),取某行某列元素,将多维矩阵展开成一行数列
python -V3.7 numpy -V 1.17 背景 继上一篇学完numpy矩阵的基本运算,继续学习numpyt的索引、 1、矩阵的索引 一纬矩阵,取单个元素 import numpy as np A = np.arange(4,13) # array([4,5,6,7,8,9,10,11,12]) print(A[3]) # 7 二维矩阵,取某一行元素 B = np.arange(2...原创 2019-12-25 11:59:17 · 1881 阅读 · 1 评论 -
二、numpy生成矩阵,矩阵基本运算
python -V 3.7 继上一篇numpy生成矩阵: 现在加一个矩阵生成方法: e = np.arange(2,14).reshape(3,4) print(e) # 生成2-14元素,是3行4列的矩阵 1、矩阵加法 import numpy as np a = np.array([10,20,30,40]) # array([10 20 30 40]) b = np.arange(4)...原创 2019-12-24 09:21:55 · 2082 阅读 · 0 评论 -
一、numpy生成矩阵和查看矩阵属性
python -V3.7 1、生成矩阵 import numpy as np array = np.array([[1,2,3],[5,6,7]]) # 列表转化为矩阵 print(array) 生成指定数据格式的矩阵 # 指定数据dtype a = np.array([3,2],dtype=np.int) print(a.dtype) a = np.array([3,5],dtype=...原创 2019-12-24 09:12:30 · 1082 阅读 · 0 评论 -
python中读取xlsx数据,保存数据到xlsx文件
python -V 3.7 import pandas as pd import xlrd df = pd.read_excel('D:/JBK/20191125_usename_team_478.xlsx',sheet_name='Sheet1') # 会直接默认读取到这个Excel的第一个表单 # 1.读取所有的数据 # data = df.head() # 默认读取前5行数据 data ...原创 2019-12-03 17:19:33 · 5106 阅读 · 0 评论 -
python3中列表数据保存到csv文件
python中保存列表数据到csv文件,excel文件 python -V 3.7 分两种: 第一种保存好几个列表数据到csv的好几列 import csv li = [[1, 'cheng', 'A','True'], [2, 'wei', 'B','False'], [3, 'wang', 'C','False']] with open("save_usename_team.csv", "w...原创 2019-11-24 19:26:10 · 14480 阅读 · 1 评论