图像处理作业4

本文详细解答了图像处理作业中的四个问题,包括:如何使用均匀分布生成指数分布和对数正态分布的随机数;证明频域内高通滤波器与低通滤波器的关系式子;解释逆谐波滤波去除胡椒噪声和盐噪声的原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图像处理作业4

1. 第二版课本习题4.21

本质没有区别,只将图片放置在中心,而周围填充0的个数不变时,不会影响结果。因为本质都是进行了周期延拓,使得尾部的信息不会被丢弃掉。相当于滤波前将图像进行了平移。需要注意的是,滤波后得到的图像也会发生平移,裁剪的时候会产生区别。

2. 假设我们有一个[0,1]上的均匀分布随机数发生器U(0,1), 请基于它构造指数分布的随机数发生器,推导出随机数生成方程。若我们有一个标准正态分布的随机数发生器N(0,1),请推导出对数正态分布的随机数生成方程。

(1) 解答

设指数分布的随机变量为YYY,概率密度PDF表示为:f(y)=λe−λy;y>0,λ>0,其CDF表示为G(y)f(y) = \lambda e^{-\lambda y};y >0,\lambda >0,其CDF表示为G(y)f(y)=λeλy;y>0,λ>0,CDFG(y)
设均匀分随机变量为XXX。并且随机数生成方程Y=g(X)Y = g(X)Y=g(X)

根据CDF的定义有:

G(y)=P{ Y≤y}=P{ g(X)≤y}=P{ X≤g−1(y)}=g−1(y)G(y)=P\{Y \le y\} = P\{g(X) \le y\} = P\{X \le g^{-1}(y)\} = g^{-1}(y)G(y)=P{ Yy}=P{ g(X)y}=P{ Xg1(y)}=g1(y)

由此可知:g(y)=G−1(y)g(y)=G^{-1}(y)g(y)=G1(y),即g(X)=G−1(X)g(X)=G^{-1}(X)g(X)=G1(X)

指数分布CDF为G(y)=∫0yλe−λxdx=1−e−λyG(y)=\int_0^{y}\lambda e^{-\lambda x}dx = 1-e^{-\lambda y}G(y)=0yλeλxdx=1eλy

G−1(X)=−1λln(1−X)G^{-1}(X) = -\frac{1}{\lambda}ln(1-X)G1(X)=λ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值