图像处理作业4
1. 第二版课本习题4.21
本质没有区别,只将图片放置在中心,而周围填充0的个数不变时,不会影响结果。因为本质都是进行了周期延拓,使得尾部的信息不会被丢弃掉。相当于滤波前将图像进行了平移。需要注意的是,滤波后得到的图像也会发生平移,裁剪的时候会产生区别。
2. 假设我们有一个[0,1]上的均匀分布随机数发生器U(0,1), 请基于它构造指数分布的随机数发生器,推导出随机数生成方程。若我们有一个标准正态分布的随机数发生器N(0,1),请推导出对数正态分布的随机数生成方程。
(1) 解答
设指数分布的随机变量为YYY,概率密度PDF表示为:f(y)=λe−λy;y>0,λ>0,其CDF表示为G(y)f(y) = \lambda e^{-\lambda y};y >0,\lambda >0,其CDF表示为G(y)f(y)=λe−λy;y>0,λ>0,其CDF表示为G(y)。
设均匀分随机变量为XXX。并且随机数生成方程Y=g(X)Y = g(X)Y=g(X)。
根据CDF的定义有:
G(y)=P{ Y≤y}=P{ g(X)≤y}=P{ X≤g−1(y)}=g−1(y)G(y)=P\{Y \le y\} = P\{g(X) \le y\} = P\{X \le g^{-1}(y)\} = g^{-1}(y)G(y)=P{ Y≤y}=P{ g(X)≤y}=P{ X≤g−1(y)}=g−1(y)
由此可知:g(y)=G−1(y)g(y)=G^{-1}(y)g(y)=G−1(y),即g(X)=G−1(X)g(X)=G^{-1}(X)g(X)=G−1(X)
指数分布CDF为G(y)=∫0yλe−λxdx=1−e−λyG(y)=\int_0^{y}\lambda e^{-\lambda x}dx = 1-e^{-\lambda y}G(y)=∫0yλe−λxdx=1−e−λy
G−1(X)=−1λln(1−X)G^{-1}(X) = -\frac{1}{\lambda}ln(1-X)G−1(X)=−λ