PINN模拟电磁过程,并可视化

使用 物理信息神经网络(PINN) 模拟电磁过程并进行可视化,涉及多个步骤,包括定义电磁方程、设计PINN模型、训练神经网络,以及最终的结果可视化。电磁过程通常由麦克斯韦方程组描述,PINN可以通过融合这些方程与数据来训练神经网络,最终得到电场、磁场等物理量的分布。

1. 电磁过程的基本方程:麦克斯韦方程组

麦克斯韦方程组描述了电磁场的行为,适用于各种电磁过程。它由四个方程组成:

  1. 高斯定律(电场)
    ∇⋅E=ρϵ0 \nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0} E=ϵ0ρ
    其中,E\mathbf{E}E 是电场,ρ\rhoρ 是电荷密度,ϵ0\epsilon_0ϵ0 是电常数。

  2. 高斯定律(磁场)
    ∇⋅B=0 \nabla \cdot \mathbf{B} = 0 B=0
    其中,B\mathbf{B}B 是磁场。

  3. 法拉第定律(电磁感应)
    ∇×E=−∂B∂t \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} ×E=tB
    这表示时间变化的磁场会产生电场。

  4. 安培-麦克斯韦定律(磁场的产生)
    ∇×B=μ0J+μ0ϵ0∂E∂t \nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} ×B=μ0J+μ0ϵ0tE
    其中,J\mathbf{J}J 是电流密度,μ0\mu_0μ0 是磁常数,ϵ0\epsilon_0ϵ0 是电常数。

2. PINN模拟电磁过程的步骤

2.1 定义电磁方程的物理损失

我们可以通过定义一个PINN来模拟电场和磁场的分布。在PINN的训练中,我们将麦克斯韦方程组中的偏微分方程(PDE)作为物理损失项,强制神经网络的输出满足这些方程。

示例方程:

假设我们考虑一维的电场和磁场的模拟:

  • 电场的方程
    ∂E∂t=−∂B∂x \frac{\partial E}{\partial t} = - \frac{\partial B}{\partial x} tE=xB

  • 磁场的方程
    ∂B∂t=μ0ϵ0∂E∂x \frac{\partial B}{\partial t} = \mu_0 \epsilon_0 \frac{\partial E}{\partial x} tB=μ0ϵ0xE

这些方程可以通过网络的输出代入计算得到残差,然后用作训练的物理损失。

2.2 构建神经网络模型

你需要构建一个适当的神经网络架构来模拟电场和磁场。例如,我们可以使用一个简单的多层感知机(MLP)来作为网络结构。

import torch
import torch.nn as nn

class PINN(nn.Module):
    def __init__(self, layers):
        super(PINN, self).__init__()
        self.layers = nn.ModuleList()
        for i in range(len(layers) - 1):
            self.layers.append(nn.Linear(layers[i], layers[i+1]))
            nn.init.xavier_normal_(self.layers[i].weight)
    
    def forward(self, x, t):
        inputs = torch.cat((x, t), dim=1)  # x and t as input
        for layer in self.layers:
            inputs = torch.tanh(layer(inputs))
        return inputs
2.3 计算物理损失(偏微分方程的残差)

假设你有电场 E(x,t)E(x, t)E(x,t) 和磁场 B(x,t)B(x, t)B(x,t),你需要计算它们的空间和时间导数。

def compute_loss(model, x, t, mu_0, epsilon_0):
    # 计算电场和磁场
    E = model(x, t)[:, 0]  # 第1列为电场
    B = model(x, t)[:, 1]  # 第2列为磁场
    
    # 计算 E_t 和 B_t
    E_t = torch.autograd.grad(E, t, grad_outputs=torch.ones_like(E), create_graph=True)[0]
    B_t = torch.autograd.grad(B, t, grad_outputs=torch.ones_like(B), create_graph=True)[0]
    
    # 计算 E_x 和 B_x
    E_x = torch.autograd.grad(E, x, grad_outputs=torch.ones_like(E), create_graph=True)[0]
    B_x = torch.autograd.grad(B, x, grad_outputs=torch.ones_like(B), create_graph=True)[0]
    
    # 计算残差
    residual_E = E_t + B_x
    residual_B = B_t - mu_0 * epsilon_0 * E_x
    
    # 物理损失 = 残差平方和
    loss_E = torch.mean(residual_E**2)
    loss_B = torch.mean(residual_B**2)
    
    return loss_E + loss_B
2.4 训练神经网络

你可以使用常规的训练方法,通过反向传播来最小化损失函数。

# 初始化训练数据
x_train = torch.linspace(0, 1, 100, requires_grad=True).view(-1, 1)
t_train = torch.linspace(0, 1, 100, requires_grad=True).view(-1, 1)

# 定义神经网络
model = PINN([2, 50, 50, 2])  # 输入 (x, t),输出 (E, B)

# 设置优化器
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)

# 训练过程
for epoch in range(10000):
    optimizer.zero_grad()
    
    # 计算物理损失
    loss = compute_loss(model, x_train, t_train, mu_0=1, epsilon_0=1)
    
    # 反向传播
    loss.backward()
    optimizer.step()
    
    if epoch % 1000 == 0:
        print(f'Epoch [{epoch}], Loss: {loss.item()}')

3. 可视化结果

完成训练后,我们可以可视化电场 E(x,t)E(x, t)E(x,t) 和磁场 B(x,t)B(x, t)B(x,t) 的分布。你可以选择一些特定的 ttt 值,并计算对应的电场和磁场。

3.1 使用Matplotlib进行可视化
import matplotlib.pyplot as plt
import numpy as np

# 生成空间和时间网格
x_grid = torch.linspace(0, 1, 100).view(-1, 1)
t_grid = torch.linspace(0, 1, 100).view(-1, 1)

# 计算电场和磁场
E_pred = model(x_grid, t_grid)[:, 0].detach().numpy()
B_pred = model(x_grid, t_grid)[:, 1].detach().numpy()

# 绘制电场和磁场图像
plt.figure(figsize=(12, 6))

# 电场
plt.subplot(1, 2, 1)
plt.plot(x_grid.numpy(), E_pred, label='Electric Field (E)')
plt.title("Electric Field E(x, t)")
plt.xlabel("x")
plt.ylabel("E(x, t)")
plt.legend()

# 磁场
plt.subplot(1, 2, 2)
plt.plot(x_grid.numpy(), B_pred, label='Magnetic Field (B)')
plt.title("Magnetic Field B(x, t)")
plt.xlabel("x")
plt.ylabel("B(x, t)")
plt.legend()

plt.tight_layout()
plt.show()
3.2 3D可视化

你可以使用 matplotlib 的 3D 绘图功能进行更复杂的可视化。

from mpl_toolkits.mplot3d import Axes3D

# 创建网格
X, T = np.meshgrid(x_grid.numpy(), t_grid.numpy())
E_grid = np.zeros_like(X)
B_grid = np.zeros_like(X)

# 填充电场和磁场数据
for i in range(len(x_grid)):
    for j in range(len(t_grid)):
        E_grid[i, j] = E_pred[i]
        B_grid[i, j] = B_pred[i]

# 创建图形
fig = plt.figure(figsize=(10, 6))

# 电场 3D 可视化
ax1 = fig.add_subplot(121, projection='3d')
ax1.plot_surface(X, T, E_grid, cmap='viridis')
ax1.set_title('Electric Field E(x, t)')
ax1.set_xlabel('x')
ax1.set_ylabel('t')
ax1.set_zlabel('E(x, t)')

# 磁场 3D 可视化
ax2 = fig.add_subplot(122, projection='3d')
ax2.plot_surface(X, T, B_grid, cmap='viridis')
ax2.set_title('Magnetic Field B(x, t)')
ax2.set_xlabel('x')
ax2.set

可视化效果如下

在这里插入图片描述

在这里插入图片描述

通过使用 物理信息神经网络(PINN) 模拟电磁过程,我们结合了电磁学中的麦克斯韦方程组和深度学习模型,使得网络能够在没有大量实验数据的情况下,通过物理方程的约束来学习电场和磁场的分布。通过这种方式,我们可以有效地模拟电磁过程,避免传统数值方法中的高昂计算成本,并且可以轻松地进行结果的可视化。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

肥猪猪爸

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值