HDU 2032

杨辉三角

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 68468    Accepted Submission(s): 28318


Problem Description
还记得中学时候学过的杨辉三角吗?具体的定义这里不再描述,你可以参考以下的图形:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
 

Input
输入数据包含多个测试实例,每个测试实例的输入只包含一个正整数n(1<=n<=30),表示将要输出的杨辉三角的层数。
 

Output
对应于每一个输入,请输出相应层数的杨辉三角,每一层的整数之间用一个空格隔开,每一个杨辉三角后面加一个空行。
 

Sample Input
2 3
 

Sample Output
1 1 1 1 1 1 1 2 1
//利用二维数组存储计算,这里要注意输出的格式,只有在数字之间才会有空格
#include <iostream>
#include <cstdio>
#include <algorithm>

using namespace std;
int main(int argc, const char * argv[]) {
    int n;
    int num[100][100] = {0};
    while(cin >> n)
    {
            for(int i = 0;i < n; ++i)
            {
                for(int j = 0;j <=i; ++j)
                {
                    if(j == 0)
                        num[i][j] = 1;
                    else
                        num[i][j] = num[i-1][j-1] + num[i-1][j];
                }
                for(int j = 0;j < i; ++j)
                    cout << num[i][j] << " ";
                cout << num[i][i] << endl;
            }
        cout << endl;
    }
    return 0;
}



内容概要:本文提出了一种融合多尺度Wavelet模型的跨文化英语交际智能模型系统(FL-DP-Wavelet),旨在通过多模态数据融合、多尺度特征提取与跨文化适应性建模,提升智能系统的文化敏感性和语境理解能力。该模型通过结合小波变换与深度学习优化语言信号的时频特征提取,基于跨文化敏感性发展模型(DMIS)构建文化适应性评估模块,并设计多模态数据融合框架,增强跨文化场景下的语义解析鲁棒性。实验结果显示,系统在跨文化语境下的语义理解准确率提升12.7%,文化适应性评分优于基线模型15.3%。 适合人群:从事跨文化交流、国际商务、外语教育的研究人员和技术开发者,特别是对智能系统在跨文化场景中的应用感兴趣的学者和工程师。 使用场景及目标:①跨文化商务谈判、教育合作和公共外交等场景中,需要提升智能系统的文化敏感性和语境理解能力;②帮助系统实现实时文化适应,减少因文化差异引起的语义误判和非语言行为冲突;③通过多模态数据融合,增强智能系统在复杂跨文化环境中的语义解析能力。 其他说明:该研究不仅提出了新的理论框架和技术路径,还在实际应用中验证了其有效性和优越性。未来将聚焦于小波-Transformer耦合、联邦学习隐私保护和在线学习算法,进一步推动系统向自主文化融合演进。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值