API网关的工作原理与实战案例

API网关在微服务架构中扮演重要角色,负责客户端请求的统一管理、路由、安全验证、限流等。SpringCloudGateway作为轻量级API网关,提供路由、过滤器等功能。文章通过实战案例展示了如何使用SpringCloudGateway进行动态路由配置、限流策略设定以及自定义过滤器实现身份验证和跟踪。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

64acb2d9657b47659c99a4f5d8df4958.png

API网关的工作原理与实战案例

API网关是一个在微服务架构中起到重要作用的组件。它可以处理所有客户端请求并对它们进行统一的管理和路由。本文将介绍API网关的工作原理,并给出一个基于Spring Cloud Gateway的实战案例。

API网关的工作原理

API网关的工作流程如下:

1.客户端向API网关发送HTTP请求。2.API网关解析并验证HTTP请求中的属性。3.API网关执行白名单或黑名单检查。4.API网关与身份提供者进行身份验证和授权。5.限流规则应用于请求。如果超过限制,则请求被拒绝。6.现在请求已经通过基本检查,API网关通过路径匹配找到相应的服务进行路由。7.API网关将请求转换为适当的协议并将其发送到后端微服务。8.API网关可以适当地处理错误,并在错误需要更长时间恢复时处理故障(熔断)。它还可以利用ELK(Elastic-Logstash-Kibana)堆栈进行日志记录和监视。我们有时会在API网关中缓存数据。

API网关可以在多个方面帮助您的微服务架构,包括:

•提高安全性:通过身份验证和授权,API网关可以确保只有授权用户可以访问您的微服务。•提高可靠性:通过限流规则和熔断机制,API网关可以防止服务过载,并保持系统的稳定性。•提高性能:通过缓存数据和负载均衡,API网关可以提高系统的性能。

基于Spring Cloud Gateway的实战案例

Spring Cloud Gateway是Spring Cloud的一部分,它提供了一种轻量级的方式来构建API网关。以下是一个基于Spring Cloud Gateway的实战案例:

Spring Cloud Gateway的基本用法

Spring Cloud Gateway的基本用法可以分为以下几个步骤:

1.在pom.xml中添加Spring Cloud Gateway的依赖:

<dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-starter-gateway</artifactId>
  </dependency>

1.在application.yml或application.properties中添加路由规则:

spring:
  cloud:
    gateway:
      routes:
        - id: route1
          uri: http://localhost:8081
          predicates:
            - Path=/api/**
        - id: route2
          uri: http://localhost:8082
          predicates:
            - Path=/user/**

1.启动Spring Boot应用程序,并访问http://localhost:8080/api/hello或http://localhost:8080/user/list

Spring Cloud Gateway的高级用法

Spring Cloud Gateway的高级用法可以包括以下几个方面:

过滤器

过滤器是Spring Cloud Gateway的核心概念之一,它可以在请求和响应之间执行各种操作,例如身份验证、流控、路由、日志等

接下来,我们将进一步探讨Spring Cloud Gateway的高级用法。具体来说,我们将介绍以下几点:

•自定义过滤器•动态路由•限流策略•断路器

自定义过滤器

Spring Cloud Gateway的过滤器是请求和响应的处理器,可以在请求被路由到目标服务之前或之后进行一些操作。过滤器可以用来处理身份验证、路由跟踪、访问日志等任务。

下面是一个自定义请求过滤器的例子,它会在请求头中添加一个自定义的跟踪ID:

@Component
public class AddTraceIdFilter implements GlobalFilter, Ordered {


    private static final String TRACE_ID_HEADER = "X-Trace-Id";
    private static final int ORDER = 1;


    @Override
    public Mono<Void> filter(ServerWebExchange exchange, GatewayFilterChain chain) {
        String traceId = UUID.randomUUID().toString();
        ServerHttpRequest request = exchange.getRequest().mutate()
                .header(TRACE_ID_HEADER, traceId)
                .build();
        ServerWebExchange mutatedExchange = exchange.mutate()
                .request(request)
                .build();
        return chain.filter(mutatedExchange);
    }


    @Override
    public int getOrder() {
        return ORDER;
    }
}

这个过滤器实现了Spring Cloud Gateway的GlobalFilter接口,并重写了其中的filter和getOrder方法。在filter方法中,它生成了一个随机的跟踪ID,并将它添加到请求头中。在getOrder方法中,它指定了过滤器的执行顺序。

动态路由

动态路由是指在运行时根据配置动态地将请求路由到不同的后端服务。Spring Cloud Gateway提供了一些机制来实现动态路由,比如使用Eureka或Consul作为服务发现组件,并结合Spring Cloud Config Server来管理路由规则。

以下是一个简单的动态路由配置的例子,它将根据请求路径将请求路由到不同的后端服务

spring:
  cloud:
    gateway:
      routes:
        - id: service1
          uri: lb://service1
          predicates:
            - Path=/service1/**
        - id: service2
          uri: lb://service2
          predicates:
            - Path=/service2/**

这个配置文件中定义了两个路由规则,它们分别将以/service1和/service2开头的请求路由到service1和service2这两个后端服务

限流策略

限流策略通常基于令牌桶算法或漏桶算法实现。这些算法都是一种流量控制算法,通过控制流量的输入速率来保护后端服务。

•令牌桶算法:在一定的时间间隔内,按照固定的速率往桶中放入令牌。当请求到来时,如果桶中有足够的令牌,则将请求处理掉,并从桶中扣除相应数量的令牌;否则,请求被拒绝。•漏桶算法:设定一个容量为b的漏桶,每单位时间流出r个请求。当请求到来时,如果桶未满,则将请求放入桶中,并等待r秒钟;否则,请求被拒绝。

在Spring Cloud Gateway中,可以通过自定义GatewayFilter实现限流策略。在GatewayFilter中,可以通过RateLimiterRegistry创建限流器,并在过滤器链中进行限流操作。

1.添加依赖

在pom.xml中添加spring-cloud-starter-gateway和spring-boot-starter-actuator依赖。

<dependencies>
  <dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-starter-gateway</artifactId>
  </dependency>
  <dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-actuator</artifactId>
  </dependency>
</dependencies>

1.配置限流策略

在配置文件中添加限流策略。这里我们以令牌桶算法为例,设置限流速率为10个请求/秒

spring:
  cloud:
    gateway:
      default-filters:
        - name: RequestRateLimiter
          args:
            key-resolver: "#{@userKeyResolver}"
            rate-limiter: "#{@redisRateLimiter}"
      routes:
        - id: test_route
          uri: http://localhost:8080
          predicates:
            - Path=/test/**
          filters:
            - name: RequestRateLimiter
              args:
                key-resolver: "#{@userKeyResolver}"
                rate-limiter: "#{@redisRateLimiter}"

1.实现GatewayFilter

创建一个实现GatewayFilter的类,用于创建限流器并进行限流操作。

@Component
public class RateLimitFilter implements GatewayFilter, Ordered {


    private final RateLimiter rateLimiter;


    public RateLimitFilter(RateLimiter rateLimiter) {
        this.rateLimiter = rateLimiter;
    }


    @Override
    public Mono<Void> filter(ServerWebExchange exchange, GatewayFilterChain chain) {
        String ip = exchange.getRequest().getRemoteAddress().getAddress().getHostAddress();
        if (rateLimiter.tryAcquire(ip)) {
            return chain.filter(exchange);
        } else {
            exchange.getResponse().setStatusCode(HttpStatus.TOO_MANY_REQUESTS);
            return exchange.getResponse().setComplete();
        }
    }


    @Override
    public int getOrder() {
        return -1;
    }
}

在上面的代码中,我们首先创建了一个名为RateLimitFilter的类,并实现了GatewayFilter接口。构造函数中传入了一个RateLimiter对象,用于进行限流操作。在filter方法中,我们通过ServerWebExchange对象获取请求的IP地址,并尝试获取令牌进行限流。如果获取到令牌,则将请求传递给下一个过滤器或处理程序,否则返回“too many requests”错误响应。

另外,我们还重写了getOrder方法并返回-1,以确保这个过滤器在所有其他过滤器之前运行。这是因为我们希望在进行任何其他操作之前先进行限流。

现在我们已经创建了一个基于网关的限流策略,并使用RateLimiter对象实现了基于令牌桶的算法进行限流操作。接下来我们需要将该过滤器添加到Spring Cloud Gateway中。

我们可以在配置文件中使用路由ID将过滤器应用于特定的路由。例如,假设我们要将上述限流过滤器应用于名为“foo”的路由,我们可以将以下代码添加到application.yml配置文件中:

spring:
  cloud:
    gateway:
      routes:
        - id: foo
          uri: http://localhost:8081
          predicates:
            - Path=/foo/**
          filters:
            - name: RateLimiter
              args:
                redis-rate-limiter.replenishRate: 10
                redis-rate-limiter.burstCapacity: 20

在这个示例中,我们使用路由ID“foo”来标识我们想要应用这个过滤器的路由。我们还定义了一个名为“RateLimiter”的过滤器,并将其添加到路由的过滤器链中。

在这个示例中,我们使用了Redis限流器来实现限流。我们设置了刷新速率为每秒10个请求,突发容量为20个请求。

当用户请求“/foo”下的任何端点时,我们的限流过滤器会在网关层面上限制请求速率。如果请求速率超过限制,则该请求将被拒绝。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小技术君

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值