- 博客(262)
- 资源 (3)
- 收藏
- 关注
原创 [智能算法]高效神经网络结构探索-ENAS
ENAS是一种高效的神经网络结构搜索方法,通过强化学习和权重共享技术自动设计高性能神经网络。系统包含控制器RNN和子模型两部分,控制器生成指令构建子模型并评估其性能,子模型通过共享超网络权重避免重复训练。具体实现中,控制器决定DAG结构的连接方式和节点操作,交替训练子模型权重和控制器参数。相比传统NAS,ENAS通过权重共享显著提升效率,所设计的模型性能优于人工构建的神经网络。该方法已成功应用于RNN单元和CNN模块的设计,展示了Auto-ML技术的强大潜力。
2025-08-01 16:02:52
518
原创 [AIGC]CLIP模型分析和代码解析
本文分析了CLIP-PyTorch实现中的关键代码结构。该模型采用双分支结构,图像编码器使用ViT,文本编码器使用BERT,通过归一化处理和矩阵混合计算图像-文本相似度。训练过程采用交叉熵损失函数进行多模态特征对齐,数据集以JSON格式存储图像路径和对应文本描述。预测时将特征向量转换为概率分布输出。代码实现完整复现了CLIP原文架构,但需注意补充bpe_simple_vocab_16e6语料库依赖。整体流程包括:特征编码、归一化处理、相似度计算三个核心环节,实现了图像和文本特征的跨模态对齐。
2025-07-21 16:49:37
586
原创 [智能算法]SPEA2算法的Python实现
摘要:本文介绍了SPEA2多目标优化算法的核心实现过程。算法采用双种群策略(100个进化个体和20个精英个体),通过混合种群计算适应度,包括原始适应度(基于支配关系)和密度估计(基于欧氏距离)。更新阶段维护精英种群规模,不足时补全,超额时截断。迭代过程采用赌轮盘选择法和随机变异策略进行种群进化,其中变异操作包含特定公式计算变异量并确保参数在边界范围内。该方法有效实现了多目标优化问题的求解。
2025-07-17 08:46:40
165
原创 [智能算法]MOEA/D算法的Python实现
MOEA/D算法初始化与迭代过程解析 该文介绍了MOEA/D多目标优化算法的实现细节。在初始化阶段,算法首先计算个体向量权重间的欧氏距离,确定T个邻居集合;然后创建初始种群并计算适应度值。迭代阶段采用三步操作:获取邻居个体、生成新解、更新种群。新解的评估采用切比雪夫距离指标,当进化效果显著时更新种群和理想点。算法通过维护邻居关系和支配前沿来实现高效的多目标优化。整个流程包含严格的数值验证和更新机制,确保优化过程的可靠性和有效性。
2025-07-15 17:06:35
260
原创 [智能算法]NSGA-II算法的Python实现
NSGA-II算法通过快速非支配排序和拥挤距离计算实现多目标优化。快速非支配排序采用空间换时间策略,通过计算个体的被支配数确定帕累托前沿,分为计算支配关系和分类排序两个步骤。拥挤距离计算则通过排序目标值并计算相邻个体的欧氏距离来维持种群多样性。该算法有效解决了多目标优化问题,能快速找到最优解集并保持解的均匀分布。
2025-07-15 10:17:32
242
原创 [智能算法]改进强度Pareto进化算法SPEA2
SPEA2是一种改进的多目标优化算法,采用小生境法和动态外部存档机制提升解集质量。其核心流程包括:1)结合支配关系和密度信息的适应度分配,通过强度值、原始适应度和密度估计综合评价个体;2)环境选择阶段,先复制非支配个体到新存档,再根据存档容量调整,不足时补充被支配个体中的优秀解,超限时进行基于欧氏距离的截断操作。相比NSGA-II,SPEA2通过精英种群与进化种群的协同进化,在解集收敛性和分布性方面表现更优。算法通过竞标赛选择、交叉变异等操作迭代更新种群,最终输出精英存档作为最优解集。
2025-07-14 15:35:21
398
原创 [智能算法]基于分解的多目标优化算法MOEA/D
MOEA/D是一种高效的多目标优化算法,通过将问题分解为多个标量优化子问题来降低计算复杂度。算法采用加权求和、切比雪夫和边界交叉三种分解策略构建聚合函数,利用邻域结构保持多样性。流程包括初始化权重向量和种群,通过遗传算子生成新解,并更新相邻解和外部存档EP。相比NSGA-II,MOEA/D计算量更小,适用于处理缩放目标,最终输出非支配解集EP。
2025-07-11 14:59:32
445
原创 [智能算法]多目标遗传算法
多目标优化问题涉及多个冲突目标的权衡求解,其核心在于寻找帕累托最优解集(Pareto前沿)。基本流程包括:计算个体适应度、基于支配关系和非支配排序筛选种群、通过遗传算法等迭代生成新种群。支配关系判定需满足在所有目标上不劣于且至少一个目标更优的条件。对于非支配解,采用拥挤距离衡量分布均匀性。NSGA-Ⅱ算法通过引入可支配序列S_p和被支配数N_p优化排序过程,降低了计算复杂度,实现帕累托前沿的高效分层。该算法通过循环迭代识别各层帕累托前沿,为多目标决策提供有效解决方案。
2025-07-09 21:02:47
466
原创 [智能算法]遗传算法细节
本文介绍了遗传算法在TTP(时间表问题)中的应用。主要内容包括:1)TTP问题的约束条件和数学模型;2)四种交叉算子(部分映射、顺序、循环、基于位置)的操作步骤;3)四种变异算子(相反、插入、交换、启发式)的实现方法;4)选择算子的轮盘赌选择机制。文章指出遗传算法包含约束项、模型项和迭代项三个核心部分,其中迭代项通过交叉和变异实现基因扰动,通过选择算子筛选优质个体,推动种群进化。该算法通过模拟自然选择机制,在满足硬约束的前提下优化资源配置。
2025-07-08 10:13:21
845
原创 [智能算法]遗传算法
遗传算法是一种模拟生物进化的优化算法,通过"复制、交叉、变异"实现种群进化。其流程包括初始化种群、迭代评估和筛选最优解三个主要步骤。算法涉及遗传编码与译码、适应度评价、选择操作(如轮盘赌选择)、交叉算子(单/多点交叉)和变异算子(均匀/边界变异)等关键技术。关键参数包括种群规模(20-100)、染色体长度、基因取值范围、交配概率(0.4-0.99)和变异概率(0.001-0.1)。该算法通过模拟自然选择机制,在优化问题中表现出良好的全局搜索能力,但需合理设置参数以避免早熟收敛或计算量过大
2025-06-17 16:22:21
862
原创 [AICG]连接万物的CLIP
CLIP是一个将文字和图片结合在一起的模型,利用来自自然语言的监督输入,将图片和文字进行配对,实现Zero-Shot的图像分类,其精度甚至可以媲美有监督训练的ResNet50。如上图所示,由于CLIP学习的是语义信息,更接近于我们用语句描述图片的行为,在域变化非常明显的情况下模型依旧能表现出良好的效果。:如图(2)所示,将ImageNet中的标签转换为一个个句子(造句),使用预训练好的文本编码器,将这些句子转换为特征向量。,来链接其语义和文本信息,在特征矩阵中,对角线上相互匹配的图片文本对是。
2025-02-15 12:33:14
765
原创 [卷积神经网络]YOLOv10论文解读
YOLOv10的改进点主要由两点:①提出一种基于无NMS的一致的双重训练策略;②提出了整体效率-精度驱动的模型架构设计策略。这两项改进使得YOLOv10相较于RT-DETR快1.8倍,比YOLOv9-C在同性能下降低了46%的延迟,减少了1.8倍的参数。
2024-08-15 22:35:19
1640
原创 [神经网络]Anchor_Free网络(YoloX,CenterNet)
Anchor Free的目标检测网络(CenterNet,YoloX)
2023-07-09 21:59:11
2406
2
WinForm+89C51四路温度采集设计
2018-04-06
ImgStringConverter.zip
2020-04-01
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人