阿里云搭建远程jupyterlab

本文介绍如何在阿里云服务器上安装配置JupyterLab,包括使用Anaconda简化Python环境管理,生成远程登录密码,配置防火墙规则及通过Docker制作JupyterLab容器。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

情况说明

趁着疫情,210元3年1核2m的服务器。赶紧下手。

因为我那个腾讯云,原先为了写毕设,统一生活和工作俩电脑都不同步的原因,另外需要记录一下常用的测试操作,需要一个电脑来另外记录,云服务器成了最好的选择,便宜好用。

因为腾讯云续了一年的期到了,续费超贵,所以这次用了阿里云。

搭建远程服务工具jupyterlab

原先我是使用jupyter notebook 来远程使用python工具的,没想到这次上网搜索的时候发现还有进阶版jupyterlab。果断试试。

准备工作

首先我们需要一个anaconda。

为啥用这个呢。方便。比你自己下载python,然后又整其他乱七八糟的东西好太多了。这玩意可以统一管理所有包

推荐清华的镜像。点击这里

自己选择适合自己电脑类型且最新的。当然最新的也不过是2018版的,不过没关系,能用就行,下载完了,自己在更新也不迟啊。

wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-5.3.1-Linux-x86_64.sh

下载完成后,使用以下命令进行安装anaconda:
sh Anaconda3-5.3.1-Linux-x86_64.sh

安装完成之后,关闭当前session,重新打开一个session,再使用conda检查是否安装完成。

正确出现提示,就代表安装正确。

这个anaconda 安装完成之后,使用conda list可以看到jupyterlab赫然在列。

我们所要做的就是配置和启动了。

配置

首先呢,要找到.jupyter这个目录。

cd ~   # 到你的默认目录
ll   
cd .jupyter

首先要生成配置文件。

jupyter notebook --generate-config

ls 可以看到jupyter_notebook_config.py

首先,要生成远程登录jupyterlab的登录密码。这里我们用的是ipython中的方法。

from notebook.auth import passwd
passwd()

这里会提示让你输入两次密码,终端不会显示,注意两次密码要一致

终端会输出一段字符
'sha1:ded51e3a8038:dfd78825da8fb0f1ba127a26bc604f81435787fa'

复制,备用

此时 使用vim进行jupyter_notebook_config.py文件的更改。

c.NotebookApp.ip='*'  # 允许任何ip访问
c.NotebookApp.open_browser = False  # 开始时是否自动开启浏览器
c.NotebookApp.port =8888 # 可自行指定一个端口, 访问时使用该端口
c.NotebookApp.password = 'sha1:ded51e3a8038:dfd78825da8fb0f1ba127a26bc604f81435787fa'  # 粘贴上刚才生成的密码
c.NotebookApp.notebook_dir = u'/root/jupyterlab'  # 设置jupyterlab的根目录
# 允许远程访问 
c.NotebookApp.allow_remote_access = True

设置完成之后,启动。
nohup jupyter lab --allow-root &

远程访问你的服务器地址+8888,就可以访问啦。

记得要配置好你服务器的安全组规则

重新docker下制作远程jupyterlab

apt-get update
apt-get upgrade

# 下载docker
apt-get install docker.io

# 获取镜像
docker pull ubuntu:16.04

# 生成容器
docker run -d -it  --name='jupyterlab' -p 3090:22 -p 3091:8888 -p 3092:3092 xxxx   # xxxx 是指刚才下载镜像的id前四位

# 获取刚才运行中的容器
docker ps  

# xxx 是指刚才获取的容器id
docker exec -it xxx /bin/bash 

apt-get update

apt-get install python-pip

apt-get install vim

pip install jupyterlab

# 此时我发现我得docker下的ubuntu镜像容器中是python2,我需要python3,于是

apt-get install python-software-properties

apt-get install software-properties-common

add-apt-repository ppa:fkrull/deadsnakes

# 更新源文件
vim /etc/apt/sources.list

# 将下面这些文字贴在最后
deb http://mirrors.aliyun.com/ubuntu/ trusty main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ trusty-security main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ trusty-updates main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ trusty-proposed main restricted universe multiverse
deb http://mirrors.aliyun.com/ubuntu/ trusty-backports main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ trusty main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ trusty-security main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ trusty-updates main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ trusty-proposed main restricted universe multiverse
deb-src http://mirrors.aliyun.com/ubuntu/ trusty-backports main restricted universe multiverse

apt-get update
apt-get upgrade

# 重新使用 apt-get install python3.7 仍然下载不了,决定直接下载源码
wget 'https://www.python.org/ftp/python/3.7.3/Python-3.7.3.tgz'

tar -zxvf Python-3.7.3.tgz

apt-get install zlib1g-dev libbz2-dev libssl-dev libncurses5-dev libsqlite3-dev libreadline-dev tk-dev libgdbm-dev libdb-dev libpcap-dev xz-utils libexpat1-dev

apt-get install liblzma-dev libffi-dev libc6-dev

cd Python-3.7.3

mkdir -p /usr/local/python3

./configure --prefix=/usr/local/python3  --enable-optimizations

make

make install

# 删除原有软连接
rm -rf /usr/bin/python3
rm -rf /usr/bin/pip3

ln -s /usr/local/python3/bin/python3.7 /usr/bin/python3
ln -s /usr/local/python3/bin/pip3.7 /usr/bin/pip3

# 使用python3验证,如果不对,重复上面安装过程

wget https://files.pythonhosted.org/packages/8e/76/66066b7bc71817238924c7e4b448abdb17eb0c92d645769c223f9ace478f/pip-20.0.2.tar.gz

wget https://files.pythonhosted.org/packages/b5/96/af1686ea8c1e503f4a81223d4a3410e7587fd52df03083de24161d0df7d4/setuptools-46.1.3.zip

unzip setuptools-40.6.2.zip
cd setuptools-40.6.2
python3.7 setup.py build
python3.7 setup.py install

tar -zxvf pip-18.1.tar.gz
cd pip-18.1
python3.7 setup.py build
python3.7 setup.py install

ln -s /usr/local/python3/bin/pip3.7 /usr/bin/pip3

# 运行jupyterlab
# 先生成需要的 地址 
cd /root
mkdir jupyterlab
nohup jupyter lab --allow-root > nohup.out  &

以上有一个python3的bin放置问题。需要在/etc/profile 末尾处添加 export PATH=$PATH:/usr/local/python3/bin 然后
退出当前vim操作页面。使用source /etc/profile立即生效。然后再启动jupyterlab

我已生成对应镜像,放在dockerhub中。可以拉取

### 如何在阿里云ECS服务器上配置深度学习框架及GPU支持 #### 配置概述 为了在阿里云ECS服务器上搭建适合AI模型训练的环境,需要完成以下几个核心部分的工作:选购合适的GPU实例、初始化并连接到服务器、安装必要的依赖以及配置深度学习框架。 --- #### 购买GPU服务器 选择具有高性能计算能力的GPU实例是第一步。这些实例专为机器学习和科学计算设计,能够显著加速模型训练过程[^3]。通过阿里云官网进入弹性计算服务页面,在创建实例时可以选择NVIDIA GPU系列的实例规格族,例如Pascal架构或Volta架构的GPU型号。 --- #### 远程连接至服务器 一旦购买了GPU实例,可以通过SSH协议远程登录到该服务器。具体方法如下: - 使用Linux/Mac终端运行命令 `ssh root@<your_server_ip>` 或者借助Windows上的PuTTY工具。 - 登录成功后可以查看当前系统的硬件资源情况,比如确认GPU设备是否正常加载: ```bash nvidia-smi ``` 如果显示详细的显卡信息,则表明驱动程序已正确安装[^1]。 --- #### 安装基础软件与依赖项 构建完整的深度学习环境之前,需先设置好操作系统的基础环境。这通常涉及更新系统包管理器、安装CUDA Toolkit及相关cuDNN库版本匹配所选的深度学习框架需求。例如对于TensorFlow而言,官方文档会明确指出兼容的具体组合[^2]: ```bash sudo apt-get update && sudo apt-get upgrade -y wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-keyring_1.0-1_all.deb sudo dpkg -i cuda-keyring_1.0-1_all.deb sudo apt-get update sudo apt install cuda ``` 随后验证CUDA安装状态: ```bash nvcc --version ``` 接着按照相同方式获取对应版次的cuDNN文件解压放置于指定目录下即可。 --- #### 构建Jupyter Notebook交互界面 为了让开发者更便捷地调试代码逻辑或者监控实验进展,推荐利用Jupyter notebook来操控整个流程。首先确保pip已经就绪之后执行下面指令完成部署工作流: ```python pip install jupyterlab tensorflow matplotlib scikit-learn pandas numpy seaborn opencv-python ``` 最后启动notebook服务端口监听外部访问请求以便随时随地开展研究活动: ```bash jupyter lab --ip=0.0.0.0 --port=8888 --allow-root ``` 此时可通过浏览器输入公网地址加上相应端口号(如http://<server-ip>:8888)进入到图形化操作面板之中。 --- #### TensorFlow框架集成测试 当上述准备工作全部完成后就可以着手编写第一个简单的神经网络样例加以检验实际效果啦!这里给出一段基本示例供参考: ```python import tensorflow as tf mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10) ]) loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) model.compile(optimizer='adam', loss=loss_fn, metrics=['accuracy']) history = model.fit(x_train, y_train, epochs=5, validation_split=0.2) test_loss, test_acc = model.evaluate(x_test, y_test, verbose=2) print(f'\nTest accuracy: {test_acc}') ``` 观察输出日志中的每轮迭代耗时时长变化趋势判断是否存在明显的性能瓶颈现象存在。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值