Explainable k-Means and k-Medians Clustering
- 摘要:Many clustering algorithms lead to cluster assignments that are hard to explain, partially because they depend on all the features of the data in a complicated way. To improve interpretability, we consider using a small decision tree to partition a data set into clusters, so that clusters can be characterized in a straightforward manner. We study this problem from a theoretical viewpoint, measuring cluster quality by the k-means and k-medians objectives.In terms of negative results, we show that popular top-down decision tree algorithms
may lead to clusterings with arbitrarily large cost, and any clustering based on a tree with k leaves must incur an ⌦(logk) approximation factor compared to the optimal clustering. On the positive side, for two means/medians, we show that a single threshold cut can achieve a constant factor approximation, and we give nea