Concept Whitening for interpretable image recognition 用于可解释图像识别的概念白化

本文介绍了概念白化(Concept Whitening)技术,旨在使神经网络的隐空间更易解释,通过去相关和归一化,使不同轴线与人类可理解的概念对齐。该技术在早期层捕获颜色和纹理信息,而在深层捕获高级语义,促进可解释的图像识别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Concept Whitening for interpretable image recognition用于可解释图像识别的概念白化

Zhi Chen, Yijie Bei, Cynthia Rudin(Nature Machine Intelligence, Vol 2, Dec 2020, 772-782)
在这里插入图片描述
Deep neural networks achieve state-of-the-art performance in image recognition. But what does a neural network encode in its latent space?
深度神经网络在图像识别中实现了最先进的性能。但是,神经网络在隐空间中编码了什么呢?
Ideally, we want the latent space to be disentangled,meaning that different parts of the latent space represent different concepts that are understandable to humans.
理想情况下,我们希望隐空间是解开的,这意味着潜在空间的不同部分代表了人类可以理解的不同概念。
With axes aligned with predefined concepts,we will see how an image travels through the layers of the neural network.
使用轴与预定义的概念对齐后,我们将看到图像如何穿过神经网络的各个层。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值