【PyTorch学习】 生成随机数

本文详细介绍了PyTorch中几种生成随机数的方法:torch.rand用于生成均匀分布的随机数,torch.randn用于生成标准正态分布的随机数,torch.normal则能生成具有指定均值和标准差的正态分布随机数,而torch.linspace用于生成等间距的数值序列。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

torch.rand

返回一个张量,包含了从区间[0, 1)的均匀分布中抽取的一组随机数。张量的形状由参数sizes定义。


tmp = torch.rand(2, 3)


torch.randn

返回一个张量,包含了从标准正态分布(均值为0,方差为1,即高斯白噪声)中抽取的一组随机数。张量的形状由参数sizes定义。

tmp = torch.randn(2, 3)

 


torch.normal

返回一个张量,包含了从指定均值means和标准差std的离散正态分布中抽取的一组随机数。

标准差std是一个张量,包含每个输出元素相关的正态分布标准差。

print(torch.normal(mean=0.5, std=torch.arange(1, 6).float()))

 


torch.linspace

返回一个1维张量,包含在区间start和end上均匀间隔的step个点。

输出张量的长度由steps决定。

print(torch.linspace(1, 10, steps=4))

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值