集成算法Xgboost实战(详细代码+数据集)

上期我们讲过了Xgboost的原理和目标函数推导,今天我们来进行实战练习,首先简单回顾下Xgboost原理:

Xgboost是一个集成模型,将K个树的结果进行求和,作为最终的预测值,Xgboost的目的就是通过不断加入树模型来使得预测结果比之前的效果好,使目标函数最小,即预测值无限接近真实值。

接下来进行实战训练:

1. 首先引入

import xgboost as xgb
import pandas as pd
import numpy as np
import pickle
import sys
import matplotlib.pyplot as plt
from sklearn.metrics import mean_absolute_error, make_scorer
from sklearn.preprocessing import StandardScaler
from sklearn.grid_search import GridSearchCV
from scipy.sparse import csr_matrix, hstack
from sklearn.cross_validation import KFold, train_test_split
from xgboost import XGBRegressor
import warnings
warnings.filterwarnings('ignore')
2. 数据预处理和对数转换

train = pd.read_csv('train.csv')

train['log_loss'] = np.log(train['loss'])

3.数据分成连续和离散的特征

features = [x for x in train.columns if x not in ['id','loss', 'log_loss']]
cat_fe

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值