LK光流法

光流是用来描述特征点在图像上的运动的属性。
特征点的灰度值可以表示为:
在这里插入图片描述
这里,一般假设运动过程中灰度不变,所以:
在这里插入图片描述
这里的 V x V_x Vx V y V_y Vy被称为光流。
LK光流法认为在一个小区域(3x3)内的光流是相同的,所以,上式可以扩展为:
在这里插入图片描述
为了适应较快的运动,LK光流法还引入了图像金字塔,迭代提升光流估计精度:
在这里插入图片描述
opencv提供了calcOpticalFlowPyrLK函数来计算光流,在计算光流之前,也可以通过goodFeaturesToTrack选择特征点,buildOpticalFlowPyramid设置金字塔。

#include <opencv2/opencv.hpp>
#include <iostream>
#include <vector>
using namespace std;
using namespace cv;


int main()
{
  // pair of images and source points
  vector<Point2f> prevPts, nextPts;
  Mat prevImg = imread("RubberWhale1.png", IMREAD_GRAYSCALE);
  Mat nextImg = imread("RubberWhale2.png", IMREAD_GRAYSCALE);
  goodFeaturesToTrack(prevImg, prevPts, 100, 0.01, 2.0);

  // pyramids
  vector<Mat> prevPyr, nextPyr;
  Size winSize(21,21);
  int maxLevel = 3;
  buildOpticalFlowPyramid(prevImg, prevPyr, winSize, maxLevel, true);
  buildOpticalFlowPyramid(nextImg, nextPyr, winSize, maxLevel, true);
  
  vector<Mat> p1, p2;
  for (int i=0; i<prevPyr.size(); ++i) {
    p1.push_back(prevPyr[i]);
    p2.push_back(nextPyr[i]);
  }
  // compute sparse flow
  Mat status;
  calcOpticalFlowPyrLK(p1, p2, prevPts, nextPts, status, noArray(), winSize, maxLevel);
  cout << nextPts.size() << " points" << endl;

  return 0;
}

参考:https://github.com/opencv/opencv/issues/8268

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值