Numpy--二维数组

a = np.arange(20).reshape(4,5)

[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]
 [15 16 17 18 19]]

获取二维数组元素

print a[1, 3] #8
print a[1:3, 3:5] #[[ 8  9][13 14]]
print a[1, :]  #[5 6 7 8 9]

行或列进行向量化运算

print a[0, :] + a[1, :]  #[ 5  7  9 11 13]
print a[:, 0] + a[:, 1]  #[ 1 11 21 31]

获取第一行最大数

print a[0,:].max() #4

获取第一行最大数的索引

print a[0,:].argmax() #4

np.argmax(a, axis=0) #0代表列 array([3, 3, 3, 3, 3], dtype=int64)

np.argmax(a, axis=1)#1代表行 array([4, 4, 4, 4], dtype=int64)

获取5列的平均值

print a[:,4].mean() #11.5

axis=0代表列,axis=1代表行。下面获取列的平均值和行的sum值:

print a.mean(axis=0) #[ 7.5  8.5  9.5 10.5 11.5]

#axis=0轴是把元素看成了[ 0  5 10 15 ],[ 1  6 11 16 ],[ 2  7 12 17 ],[ 3  8 13 18 ],[ 4  9 14 19 ]五个元素


print a.sum(axis=1) #[10 35 60 85]

# axis=1轴是把元素看成了[ 0  1  2  3  4],,[ 5  6  7  8  9] ,[10 11 12 13 14],[15 16 17 18 19]四个元素

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值