评价SLAM算法的一些指标及评价工具evo的使用方法

本文介绍了SLAM算法的评价指标,如绝对轨迹误差(ATE)、相对位姿误差(RPE)、均方根误差(RMSE)等,并详细讲解了evo工具的使用方法,包括数据集格式、轨迹绘制、误差计算和结果比较。同时提到了TUM数据集的评价工具evaluate_ate.py和evaluate_rpe.py。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在前面的话

在读论文中,在实验部分一般都会出现大量的图表来辅助证明自己的结论,也会有一些相应的指标来评价算法的精度及稳定性等,在这里整理一下相关的东西,方便日后查看。

评价指标

绝对轨迹误差(ATE:abosulte trajectory error):直接计算相机位姿的真实值与SLAM系统的估计值之间的差,程序首先根据位姿的时间戳将真实值和估计值进行对齐, 然后计算每对位姿之间的差值, 并最终以图表的形式输出, 该标准非常适合于评估视觉 SLAM 系统的性能。

相对位姿误差(RPE:relative pose error):用于计算相同两个时间戳上的位姿变化量的差, 同样, 在用时间戳对齐之后, 真实位姿和估计位姿均每隔一段相同时间计算位姿的变化量, 然后对该变化量做差, 以获得相对位姿误差, 该标准适合于估计系统的漂移。

均方根误差( RMSE:Root Mean Square Error): 是观测值与真值偏差的平方和与观测次数m比值的平方根。 是用来衡量观测值同真值之间的偏差。表达式为:
在这里插入图片描述

** 平均绝对误差(MAE:Mean Absolute Error )**: 是绝对误差的平均值,能更好地反映预测值误差的实际情况。表达式为:
在这里插入图片描述

标准差(SD: Standard Deviation ): 是方差的算数平方根.是用来衡量一组数自身的离散程度.表达式为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值