写在前面的话
在读论文中,在实验部分一般都会出现大量的图表来辅助证明自己的结论,也会有一些相应的指标来评价算法的精度及稳定性等,在这里整理一下相关的东西,方便日后查看。
评价指标
绝对轨迹误差(ATE:abosulte trajectory error):直接计算相机位姿的真实值与SLAM系统的估计值之间的差,程序首先根据位姿的时间戳将真实值和估计值进行对齐, 然后计算每对位姿之间的差值, 并最终以图表的形式输出, 该标准非常适合于评估视觉 SLAM 系统的性能。
相对位姿误差(RPE:relative pose error):用于计算相同两个时间戳上的位姿变化量的差, 同样, 在用时间戳对齐之后, 真实位姿和估计位姿均每隔一段相同时间计算位姿的变化量, 然后对该变化量做差, 以获得相对位姿误差, 该标准适合于估计系统的漂移。
均方根误差( RMSE:Root Mean Square Error): 是观测值与真值偏差的平方和与观测次数m比值的平方根。 是用来衡量观测值同真值之间的偏差。表达式为:
** 平均绝对误差(MAE:Mean Absolute Error )**: 是绝对误差的平均值,能更好地反映预测值误差的实际情况。表达式为:
标准差(SD: Standard Deviation ): 是方差的算数平方根.是用来衡量一组数自身的离散程度.表达式为: