CPU版Deep Graph Library (DGL)实践

本文介绍DGL(Deep Graph Library),一个专为图深度学习设计的开源框架,提供CPU版本便于初学者快速上手。文章包含安装指南,推荐学习资源及教程链接,适合图神经网络领域的新人。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

为了方便普通笔记上学习图深度学习,Deep Graph Library (DGL)提供了cpu版本,方便易用。

github:
https://github.com/dmlc/dgl
在这里插入图片描述
本人使用了pip安装。

DGL官方文档:https://docs.dgl.ai/

Graph Convolutional Networks 图卷积网络:
https://www.jianshu.com/p/f09e6f11dd4c

亚马逊+纽约大学开源图神经网络框架DGL:新手友好,与主流框架无缝衔接:https://blog.csdn.net/yh0vlde8vg8ep9vge/article/details/84901043

对于想了解DGL的初学者,我们推荐从这些教程开始:
https://docs.dgl.ai/tutorials/basics/index.html

同时,所有示例模型,我们都提供了详细的从零开始的教程:
https://docs.dgl.ai/tutorials/models/index.html

在行业久了,慢慢的开始尝试副业
程序猿如何做副业(在做好主业的基础上)
https://blog.csdn.net/weixin_38569817/article/details/105481372

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值