常用损失函数

本文探讨了线性分类器的参数W在Hinge Loss(SVM)和交叉熵损失函数(Softmax)中的应用,介绍了正则化如何防止过拟合。重点讲解了这两种常见的机器学习损失函数及其在实际场景中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

损失函数

W是线性分类器的参数,f(x,W)是各个类别分类的分数。
在这里插入图片描述
![在这里插入图片描述](https://img-blog.csdnimg.cn/b0578bd884f74917bd800ec6d0ed34cd.png#pic_cente =x=600)

Hinge loss—SVM在这里插入图片描述 在这里插入图片描述

在这里插入图片描述
Regulization(正则化):避免模型过拟合

在这里插入图片描述
在这里插入图片描述

交叉熵损失函数—softmax

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值