偏度和峰度

本文探讨了偏度和峰度这两个统计概念,解释了它们如何衡量数据分布的对称性和尖锐程度,并通过Python的pandas库进行实例演示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

相对于一个正态分布而言的

偏度:衡量相对于正态分布的对称性

峰度:衡量图像的尖锐程度

偏度(skewness)和峰度(kurtosis)

import pandas as pd
x = [53, 61, 50, 60, 78, 47]
s = pd.Series(x)//序列
print(s.skew())//偏度
print(s.kurt())

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值