PLSA的推导:
主要通过文档生成主题,主题生成词的逆过程来求解。
求解的方式:化简成主题分布,和词分布的两个参数的形式。再用EM方法求解
EM: 后验概率:(求解θ和Q)
最后带入E(L)中求解和
https://blog.csdn.net/m0_37788308/article/details/78115378
LDA模型:
在PLSA的基础上加上了贝叶斯框架
先用用一个Dirichlet分布去取主题,再用一个Dirichlet分布去取词。
https://blog.csdn.net/v_july_v/article/details/41209515
LFM 隐语义模型
见协同过滤章节
视频学习地址;
https://v.youku.com/v_show/id_XMzI4NDk1Mjc3Ng==.html?spm=a2h0j.11185381.listitem_page1.5!12~A
EM解析
E步:求后验概率带入期望中(Q是隐藏变量的概率,求解Q)
M步:参数求解
https://blog.csdn.net/fuqiuai/article/details/79484421