主题分布

博客主要介绍了PLSA的推导,通过文档生成主题、主题生成词的逆过程求解,化简为主题和词分布参数形式后用EM方法求解。还提到LDA模型在PLSA基础上加入贝叶斯框架,以及LFM隐语义模型,最后对EM方法的E步和M步进行了解析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PLSA的推导:
主要通过文档生成主题,主题生成词的逆过程来求解。
求解的方式:化简成主题分布,和词分布的两个参数的形式。再用EM方法求解
EM: 后验概率:(求解θ和Q)
在这里插入图片描述
最后带入E(L)中求解在这里插入图片描述在这里插入图片描述
在这里插入图片描述
https://blog.csdn.net/m0_37788308/article/details/78115378

LDA模型:
在PLSA的基础上加上了贝叶斯框架
先用用一个Dirichlet分布去取主题,再用一个Dirichlet分布去取词。
在这里插入图片描述
https://blog.csdn.net/v_july_v/article/details/41209515

LFM 隐语义模型
见协同过滤章节

视频学习地址;
https://v.youku.com/v_show/id_XMzI4NDk1Mjc3Ng==.html?spm=a2h0j.11185381.listitem_page1.5!12~A

EM解析
E步:求后验概率带入期望中(Q是隐藏变量的概率,求解Q)
在这里插入图片描述

M步:参数求解
在这里插入图片描述
https://blog.csdn.net/fuqiuai/article/details/79484421

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值