深度学习CV(基础理论知识)

本文介绍了Python在机器学习中的应用,包括元组、幂运算、机器学习库如numpy、pandas、matplotlib等。讨论了波士顿房价预测的线性回归模型,机器学习的基本概念如有监督学习、无监督学习、支持向量机(SVM)。深入讲解了深度学习中的神经网络、卷积神经网络(CNN)、特征编码、池化层和模型泛化能力。此外,还提及了图像识别、目标检测方法如FCN和SegNet在医学影像分析和文字识别等领域的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python 解释性语言

1.tuple元组:定义一个只有一个元素的tuple,必须加逗号

2.** 幂;// 整除

3.机器学习常用库: numpy(科学计算,数据分析),pandas(数据类型分析工具),pil(图像处理),matplotlib(可视化图形绘制)

4.爬虫一般步骤:获取网页内容,根据正则等方式匹配,保存内容以指定方式。请求头伪装等需要注意。

5.波士顿房价预测:线性回归模型。准备数据(训练数据,测试数据);配置网络(定义网络,损失函数(结果与真实结果的拟合),优化算法);训练网络;模型评估,预测。        paddle.fluid 飞浆核心框架

6.机器学习

 统计学习方法为主导,代表为SVM(支持向量机) 机器学习方法分为:有监督学习(分类和回归);无监督学习(聚类);半监督学习(给少量的标注训练数据及大量未标注数据);增强学习(只有评价而非正误);多任务学习。

贝叶斯,概率;鸢尾花分类→支持向量机(SVM):寻找最优决策边界

7.k-交叉验证:7:2:1

8.特征编码 one-hot编码;语义编码

<
### 深度学习基础理论知识 #### 什么是深度学习深度学习是一种基于人工神经网络的机器学习方法,它通过构建多层结构来模拟人类大脑的工作方式。这些层次通常被称为隐藏层,每一层都负责提取输入数据的不同特征[^1]。 #### 深度学习的核心特点 - **多层次架构**:深度学习模型由多个神经元组成的层数构成,每层之间存在复杂的连接关系。 - **自动特征提取**:相比于传统的机器学习方法需要手动设计特征,深度学习可以通过训练过程自动学习到有效的特征表示[^3]。 - **非线性建模能力**:通过引入激活函数(如ReLU、Sigmoid),深度学习能够捕捉复杂的数据分布并建立高度非线性的映射关系。 #### 主要组成部分 以下是深度学习中的几个核心组件及其作用: - **神经元**:这是组成神经网络的基本单元,类似于生物神经系统中的细胞体。每个神经元接收来自前一层节点的加权输入信号,并将其传递给下一层。 - **权重与偏置**:权重决定了各输入对于当前输出的重要性程度;而偏置则允许调整整个系统的响应曲线位置以便更好地拟合目标函数。 - **损失函数**:用于衡量预测值和真实标签之间的差距大小,在反向传播过程中指导参数更新方向以最小化误差。 - **优化算法**:常见的梯度下降法家族成员包括SGD(随机梯度下降),Adam等都是用来寻找使损失降到最低处的一系列迭代步骤[^2]。 #### 流行框架概述 为了简化开发流程提高效率,目前市面上出现了许多优秀的开源工具包供开发者选用比如TensorFlow, PyTorch等等它们提供了丰富的API接口支持GPU加速等功能极大地方便了科研人员及工程师们实现自己的想法[^4]。 ```python import torch from torchvision import datasets, transforms transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) trainset = datasets.MNIST('~/.pytorch/MNIST_data/', download=True, train=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True) dataiter = iter(trainloader) images, labels = dataiter.next() print(images.shape) ``` 上述代码片段展示了如何使用PyTorch加载MNIST手写数字数据集的一个简单例子。 #### 发展趋势 近年来随着研究深入特别是自注意力机制Attention Mechanism以及Transformers架构被提出之后使得序列建模效果得到了质飞跃不仅限于自然语言处理还扩展到了计算机视觉等多个交叉学科领域继续推动着AI技术边界不断向前迈进。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值