一文总结YOLOv4所列的Bag of freebies

YOLOv4通过Bag of Freebies实现训练成本增加而推理成本不变的精度提升。包括像素级调整如几何畸变、光照变化,遮挡技术如Random Erase、CutOut、Hide-and-Seek、GridMask,正则化方法Dropout、DropConnect、DropBlock,多图数据增强Mixup、CutMix、Mosaic,以及风格转移GAN和数据分布不均衡的处理策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

YOLOv4

YOLOv4其实是一个结合了大量前人研究技术,加以组合并进行适当创新的高水平论文,实现了速度和精度的完美平衡。
论文总结了大量的目标检测提点技巧(tricks),分为Bag of Freebies和Bag of Specials,本人在阅读该论文时就想着把这些技巧全部总结起来,以便日后所需。

yolov4论文:YOLOv4: Optimal Speed and Accuracy of Object Detection
arxiv:https://arxiv.org/abs/2004.10934
github源码:https://github.com/AlexeyAB/darknet

目标检测架构

论文把当前目标检测架构分为了四部分:

  • 输入(Input): 图像、图像金字塔等;
  • 骨干网络(Backbone):用于提取图片的特征图,常用的有VGG16、ResNet-50、SpineNet、EfficientNet-B0/B7、CSPResNetXt50、CSPDarknet53等;
  • 颈部网络(Neck):
    • 额外模块:SPP、ASPP、RFB、SAM
    • 融合模块:FPN、PAN、NAS-FPN、Full-connected FPN、BiFPN、ASFF、SFAM
  • 头部网络(Head):
    • Dense Prediction(one-stage)
      • RPN、SSD、YOLO、RetinaNet(anchor based)
      • CornerNet、CenterNet、MatrixNet、FCOS(anchor free)
    • Sparse Prediction(two-stage)
      • Faster R-CNN、R-FCN、Mask R-CNN(anchor based)
      • RepPoints(anchor free)

目标检测框架

Bag of freebies

Bag of freebies是指只增加训练成本而不增加推理成本来提高检测精度的方法,通常指的是数据增强。

像素级调整

几何畸变
  • Random Scaling(随机缩放)
  • Random Cropping(随机裁剪)
  • Random Flipping(随机翻转)
  • Random Rotating(随机旋转)

随机翻转和随机旋转的区别在于,随机翻转是通常对输入图片以某个轴进行翻转,随机旋转是随输入图片进行顺时针角度旋转。

光照变化
  • Brightness(亮度)
  • Contrast(对比度)
  • Hue(色调)
  • Saturation(饱和度)
  • Noise(噪声)

通过调整输入图片的亮度、对比度、色调、饱和度和添加噪声来进行数据增强。

遮挡

遮挡操作是对输入图片进行遮挡来进行数据增强。

Random Erase

论文:Random Erasing Data Augmentation
arxiv:https://arxiv.org/pdf/1708.04896v2.pdf
github源码:https://github.com/zhunzhong07/Random-Erasing

Random Erase称为随机擦除,随机选择一个区域,采用随机值进行覆盖,所选区域一定在图像内。把物体遮挡一部分也能被正确识别分类,这样就迫使网络利用局部数据进行训练识别,增大了训练难度,一定程度提高模型的泛化能力。
Random Erase

CutOut

论文:Improved Regularization of Convolutional Neural Networks with Cutout
arxi

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值