EfficientDet: Scalable and Efficient Object Detection
论文:EfficientDet: Scalable and Efficient Object Detection
论文地址:https://arxiv.org/pdf/1911.09070.pdf
卷积神经网络的速度和精度之间存在权衡,而 EfficientDet 是一个总称,可以分为 EfficientDet-D1 ~ EfficientDet-D7,速度逐渐变慢,但是精度也逐渐提高。
由上图可知,EfficientDet-D7的参数量52M,FLOPs为325B的情况下,在COCO测试集上达到了53.7的AP,是一个SOTA结果。
BiFPN
EfficientDet-D7最重要的贡献就是提出了BiFPN的特征融合。
自从FPN提出之后,各种连连看式的特征融合方法被提出来,FPN是将高层语义信息通过自顶向下的路径进行传递,PAN为了让低层的位置信息也能传递到高层语义信息层,添加了一个自低向上的路径,学术界戏称为“双塔模型”。NAS-FPN是使用神经搜索融合结构,然后重复结构块。
- 经过作者观察,PAN性能比FPN和NAS-FPN要好,但是需要更多参数和计算成本。