- 博客(213)
- 资源 (13)
- 收藏
- 关注
原创 【Python】可设置抽奖者权重的抽奖脚本
抽奖系统包含如下特点:1、可给不同抽奖者设置不同的权重2、先从价值高的奖品开始抽3、已经中奖的人,不再参与后续的抽奖
2022-11-27 16:03:51
1356
原创 【算法】找到单次出现的元素最佳方法——异或
背景Leetcode 389. 找不同 (https://leetcode-cn.com/problems/find-the-difference/),以为用ASCII码值相减已经很快了,没想到还有更骚的——直接异或。。。附上大神代码,被秀的头皮发麻class Solution: def findTheDifference(self, s: str, t: str) -> str: res = 0 for i in s + t :
2022-03-20 12:32:54
779
1
原创 【Python】用哈希表来提高查询“元素“to“元素“效率
背景Leetcode 506. 相对名次(https://leetcode-cn.com/problems/relative-ranks/),这道题思路很简单,就是排序,然后找到返回排序后的索引。代码优化一开始写的代码是:score = [10, 3, 8, 9, 4]score_sort = sorted(score, reverse=True)res = []for s in score: loc = score_sort.index(s) if loc == 0:
2022-03-20 11:44:39
1611
原创 【Python】collections.Counter快速统计元素个数,免去手动构造字典的烦恼
用法用collections.Counter来快速统计元素个数:import collectionsa = collections.Counter("sdfdsgsdfdfssfd") #把所有元素出现的次数统计下来了print(a)输出结果:Counter({‘s’: 5, ‘d’: 5, ‘f’: 4, ‘g’: 1})具体案例Leetcode 409. 最长回文串 可用collections.Counter来快速解题。(https://leetcode-cn.com/probl
2022-03-20 10:53:12
898
1
原创 【算法】用计算机思维求解“12个硬币其中一个为假,三次称量找到假硬币”问题(附代码)
背景题目是这样子的:有12枚硬币,其中有一枚假币,而且真币与假币谁轻谁重不知,如何通过三次称量判断出哪枚是假币?这是一道很经典的逻辑推理题,乍一看感觉很想脑筋急转弯,但是其实完全可以用计算机思维去系统的解这道题。如果能够掌握系统的思维,这样就可以举一反三,解决更多的问题。——毕竟总不能啥都用人都推理吧?万一数据量变大了怎么办呢?例如39个硬币称4次要怎么称?这道题的关键:状态。——天平的状态、硬币的状态。思路首先,天平的状态只有3种可能:左边重、右边重、平衡。如果用计算机语言表示:左边重
2022-03-19 10:35:01
5253
1
原创 【Python】图片搬家demo例子
代码作用把指定名字的图片从地址A粘贴到地址B代码import osimport shutildef read_txt(txt_name): with open(txt_name, 'r', encoding='utf-8') as f: txt_list = f.readlines() for i in range(len(txt_list)): txt_list[i] = txt_list[i].rstrip('\n') return t
2021-10-29 01:05:03
163
原创 【Python】selenium本地网页内容代码保存demo
功能介绍打开本地html,定位到特定内容,然后保存该内容对应的html到txt中代码from selenium import webdriverfrom tqdm import tqdmdef write_txt(txt_list, txt_name): with open(txt_name, 'a+', encoding='utf-8') as f: for txt in txt_list: f.write(txt+'\n\n')def lo
2021-09-26 00:45:48
911
1
原创 【Win10】蓝屏“选择一个选项”,关机重启均无法进入系统解决方案
参考文章:https://zhuanlan.zhihu.com/p/140922138https://blog.csdn.net/Andrew_clovers/article/details/106139827https://www.pianshen.com/article/89412024098/
2021-05-12 14:50:39
50905
54
原创 【Ubuntu】用Windows远程桌面连接Ubuntu时出现闪退
问题描述可以用SSH连接Ubuntu,Xrog也是正常,但是用Windows远程桌面连接Ubuntu时,可以连接成功,但是输入完账号后,会直接闪退解决方案远程桌面连接方式的话,Ubuntu本机和远程不可以同时登陆一个账号,所以需要注销掉Ubuntu本机上的账号...
2021-02-27 14:35:25
7015
5
原创 【硬件】显示器显示超出工作频率范围
问题描述开机的时候显示器一直黑屏,显示超出工作频率范围网上搜了一圈说什么调分辨率,一点用都没有,我桌面都进不去怎么调分辨率。。。无语解决办法很简单,很可能是你开机的时候,显示器和电脑的数据线没插好就开机了,所以GPU默认的频率大于你显示器的频率但是如果GPU和显示器之间有数据线连接的话,GPU是会自动调节频率的,所以把数据线插好后,再重启即可~...
2021-02-20 22:27:06
1945
原创 【Python】并行运行多个cmd命令
使用场景有时候需要同时运行多个cmd命令,如果手动打开一个个cmd再输入指令的话,就会非常慢。如果通过&符号使得命令连续运行,指令是有先后顺序的(即串行的),运行完一条才会运行下一条,效率也很低,所以我们可以通过多线程来并行多个cmd命令。代码下面的代码功能相当于开了两个窗口,分别运行python main.py --model yolo和python main.py --model centernet:#!/usr/bin/python# encoding=utf-8import
2021-02-20 17:05:09
12250
4
原创 【Python】ValueError: unsupported pickle protocol: 5解决方案
问题描述使用pickle.load(f)读取pkl文件的时候,报错ValueError: unsupported pickle protocol: 5解决方案原因是由于保存pkl文件的版本是python3.8,而读取的时候用了python3.7来读取,所以才会报错。解决办法就是:保存和读取pkl文件用同样的python版本...
2021-02-05 11:30:47
23604
1
转载 【Python】判断一个数组中是否包含另一个数组
y1 = np.array([[1, 2], [1, 3], [1, 2], [2, 2]])y2 = np.array([[100, 200], [100,300], [100, 200], [200, 200]])z = np.array([1, 2])(y1 == z).all(1).any()# True(y2 == z).all(1).any()# False参考:关于python:检查NumPy数组是否包含另一个数组...
2021-01-25 10:17:59
8044
2
原创 【Vim】在Microsoft Office使用Vim的方法
下载ViEmu forWord & Outlook无脑安装后重启Microsoft Office即可Ctrl+Shift+Alt+v为启用与禁用ViEmu。其余的操作与Vim是一样的。备注:最全的vim快捷键
2021-01-19 23:02:30
2379
1
原创 【Python】logging模块demo
有时候我们希望代码可以实时输出进度,同时这些进度又可以实时保存进txt里面,这个时候就可以用到logging模块下面这一段是demo代码import loggingdef Logger(logger_name): logger = logging.getLogger(__name__) logger.setLevel(level=logging.INFO) handler = logging.FileHandler(logger_name) handler.setLe
2021-01-17 17:00:56
312
原创 【Python】argparse模块demo
有时候可能同一段代码需要运行多次,每次只是几个参数不同,这个时候可以用到argparse模块,只需要改变命令行的参数就可以,代码变量不需要改来改去。下面是一段demo,参数改成你自己的就好了:import argparseimport osimport datetimedef get_args(): parser = argparse.ArgumentParser(description='Test') parser.add_argument('--epoch', defaul
2021-01-17 16:20:08
268
2
原创 【Python】numpy数组按照指定列由大到小排序方法
import numpy as npa = np.array([[8.0000000e+01, 1.9200000e+02, 1.2800000e+02, 3.1100000e+02, 9.7027886e-01], [5.6000000e+01, 1.9300000e+02, 8.1000000e+01, 2.5200000e+02, 1.0378717e-01], [2.7900000e+02, 1.3900000e+02, 3.0700000e+02, 2.1100000e+02, 7.30104
2021-01-15 10:02:49
7505
原创 【Pycharm】CreateProcess error = 2,系统找不到指定的文件
问题描述用SSH连接服务器debug的时候,显示报错CreateProcess error = 2,系统找不到指定的文件,但是明明这个文件在本地和服务器都是有的解决方案选择“Run”-“Edit Configurations”,删除那个提示报错的代码例如我报错的代码是genetic_algorithm.py,就删掉它,然后再重新选择“Run”-“Run”j就好了...
2021-01-15 09:40:00
1945
2
原创 【Python】numpy将数组按顺序排列后又重新还原原来顺序的方法
前言有时候会遇到一些场景,需要我们对数据排序后,进行某一些处理,然后又让我们的数据恢复成原来的排序,在网上搜了下发现没有现成的demo,所以这里记录一下一维情况import numpy as nparr = np.array([2, 1, 3, 5, 2, 44, 11])print('原来顺序:', arr)order = np.argsort(-arr)arr = sorted(arr, reverse=True)print('排序后顺序:',arr)recovery_arr =
2021-01-11 16:44:54
4442
2
原创 【Python】matplotlib绘制热力图代码
文档地址:matplotlib.axes.Axes.imshowCreating annotated heatmaps实在是太全了,而且例子也很简单易懂,没什么可说的了,mark一下。。。
2021-01-08 15:12:31
1331
原创 【Python】opencv中的颜色问题
在cv2中,color的通道顺序不是RGB,而是BGR,所以在画图过程中(例如下面的代码):(255, 0, 0)实际上是蓝色而不是红色,红色应为(0, 0, 255)# bb的格式为:[xmin, ymin, xmax, ymax]cv2.rectangle(img, (int(bb[0]), int(bb[1])), (int(bb[2]), int(bb[3])), color, 2)附上三原色原
2021-01-05 11:24:59
1080
原创 【Python】多种类直方图绘制demo
import seaborn as snsimport numpy as npimport matplotlib.pyplot as pltnp.random.seed(0)x1=np.random.randn(50)np.random.seed(1)x2=np.random.randn(50)plt.figure(dpi=120)sns.set(style='dark')sns.set_style("dark", {"axes.facecolor": "#e9f3ea"})g=sns
2020-12-30 14:47:02
1278
原创 【Pytorch】快速输出网络模型信息方法
首先,安装torchsummarypip isntall torchsummary下面是demo代码,其中(3, 100, 100)分别为单张图片的通道数、高、宽from torchsummary import summaryimport torchvisionimport torchdef model_info(model): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') back
2020-12-28 10:51:36
1810
1
转载 【Git】git clone很慢解决办法
https://www.zhihu.com/search?type=content&q=git%20clone%E5%BE%88%E6%85%A2
2020-12-13 19:11:21
233
原创 【Linux】Pycharm远程连接Ubuntu服务器、调试代码、可视化
设置SSH设置解释器可视化在cmd命令行中输出ipconfig,查看本地ip地址在要运行的代码文件中,添加环境变量DISPLAY=******:0.0(其中******指的是你windows的ip地址)如果想在终端实现图形化的话,首先先新建一个终端然后在终端输入export DISPLAY=******:0.0(其中******指的是你windows的ip地址)然后就可以可视化了参考:PuTTY + Xming 实现图形安装 Oracle...
2020-12-12 13:58:55
953
1
原创 【Python】opencv2画行人检测框常用代码
import cv2import numpy as npdef cv_imread(filePath): cv_img = cv2.imdecode(np.fromfile(filePath,dtype=np.uint8), -1) return cv_img# 需要可视化的图片地址img_path = ‘’# 对应图片的检测结果detection_result = []# 如果路径中包含中文,则需要用函数cv_imread的方式来读取,否则会报错img = cv_im
2020-11-17 11:05:39
779
原创 【行人检测】miss rate versus false positives per image (FPPI) 前世今生(实战篇-下)
之前我们介绍了:理论部分(【目标检测】miss rate versus false positives per image (FPPI) 前世今生(理论篇))源码解读部分(【目标检测】miss rate versus false positives per image (FPPI) 前世今生(实战篇-上))今天我们来用自己的数据,绘制一下FPPI图(第一到六都在前面文章中,所以这篇文章直接从七开始)七、用自己的数据绘制FPPI【待写】...
2020-11-14 20:53:52
1059
5
原创 【行人检测】miss rate versus false positives per image (FPPI) 前世今生(实战篇-上)
上文我们说到【目标检测】miss rate versus false positives per image (FPPI) 前世今生(理论篇),今天我们来实际绘制一下FPPI图四、miss rate versus false positives per image (FPPI) 官方绘制方法接下来我们用作者提供的数据,跑通作者绘图的代码1. 安装第三方工具包按照这篇文章Caltech评估方法的0 安装步骤安装2. 下载annotations和resannotations是数据集的ground
2020-11-13 23:06:30
1767
9
原创 【行人检测】miss rate versus false positives per image (FPPI) 前世今生(理论篇)
一、前言最近在做行人检测相关的东西,用到一个指标叫做miss rate versus false positives per-image (FPPI),但是搜了一圈网上发现相关的资料很少,所以自己再梳理一下这个指标相关的知识,也方便后续的人使用这个,如果有不对的地方欢迎指正。二、miss rate versus false positives per window (FPPW)在介绍miss rate versus false positives per-image(后文简称FPPI)之前,就不得不
2020-11-13 18:16:52
6060
8
原创 【算法】布赖恩·克尼根算法——天才算法求二进制中1的个数
题目背景做leetcode第461题汉明距离的时候,发现一个很骚的求1的个数的算法,大呼牛逼!其实题目本身思路不难,就是求异或然后算1个个数,只是没有想到还可以用这么骚的方式来求。布赖恩·克尼根算法思路是否可以像人类直观的计数比特为 1 的位数,跳过两个 1 之间的 0。例如:10001000。这是布赖恩·克尼根位计数算法的基本思想。该算法使用特定比特位和算术运算移除等于 1 的最右比特位。当我们在 number 和 number-1 上做 AND 位运算时,原数字 number 的最右边等于
2020-10-24 10:21:20
1058
原创 【MySQL】在workbench中导入csv时报错:unhandled exception:(u“,)
问题在workbench中导入csv时报错:unhandled exception:(u",)解决办法初次使用MYSQL的workbench,导入csv时遇到的几个问题
2020-09-08 16:52:34
5874
1
原创 【Python】实现排列组合
import itertoolsres = []for i in itertools.permutations('123', 3): res.append(''.join(i))# 输出 ['123', '132', '213', '231', '312', '321']print(res)参考:python解决排列组合
2020-08-31 09:59:25
833
原创 【Docker】安装步骤及遇到的问题
安装步骤参考:Ubuntu Linux 安裝 Docker 步驟與使用教學问题docker version输入上面指令时,出现下面报错:Got permission denied while trying to connect to the Docker daemon socket at unix:///var/run/docker.sock: Get http://%2Fvar%2Frun%2Fdocker.sock/v1.39/version: dial unix /var/run/dock
2020-08-30 21:46:26
224
原创 【Pytorch】 Attempting to deserialize object on a CUDA device but torch.cuda.is_available()
torch.loads
2020-08-18 10:50:21
2726
原创 【MySQL】基本使用
安装过程:【MySQL】Win8安装过程及遇到的问题课程:一天学会 MySQL 数据库指令速查:MySQL 教程MySQL命令不区分大小写~登陆与退出账号名为root,密码为100mysql -uroot -p110exit;创建、删除、显示、选择数据库创建create DATABASE test;删除drop database test;显示show databases;选择use test查看、创建、删除数据表P.S. 先要进入到指定的数据库查看所有表格
2020-08-12 22:31:36
131
原创 【MySQL】Win8安装过程及遇到的问题
安装教程https://blog.csdn.net/qq_37350706/article/details/81707862#%E5%85%88%E5%8E%BB%E5%AE%98%E7%BD%91%E4%B8%8B%E8%BD%BD%E7%82%B9%E5%87%BB%E7%9A%84MySQL%E7%9A%84%E4%B8%8B%E8%BD%BD%E2%80%8B问题1:安装MySQL出现”无法启动此程序,因为计算机中丢失VCRUNTIME140_1.dll。尝试重新安装该程序以解决此问题。“解决
2020-08-12 17:06:42
307
原创 【Python】json文件读写
读jsonimport jsonjson_file = ''with open(json_file, 'r', encoding='utf8') as fp: json_data = json.load(fp)写jsonimport jsonjson_file = '1.json'dict1 = [{'name': 'Tom', 'age': 10}, {'name': 'Marry', 'age': 18}]with open(json_file,'w',encoding='ut
2020-07-28 19:57:00
657
原创 【Python】带负数的切片操作速记
只要记住后面的式子就好了:[start_index: stop_index: step]start_index是切片的起始位置stop_index是切片的结束位置(不包括)step可以不提供,默认值是1,步长值不能为0,不然会报错ValueError例如,a = [1,2,3,4,5]a[-2:]表示start_index=-2,一直取值到结束,step=1,所以结果为[4,5]a[:-2]表示stop_index=-2,start_index为默认的0,step=1,所以结果为[1,2,3]
2020-07-05 20:01:27
3550
原创 【统计学】皮尔森相关系数公式理解
皮尔森相关系数公式文字描述:相关性系数(Px,y)等于X,Y之间的协方差cov(X,Y)除以它们各自标准差的乘积(σX,σY)1. 先解释分子,为什么用协方差?因为我们想要研究的两组数据的相关性,两个组数据如果相关的的话,要满足的最基本的条件:变化趋势相似(例如正相关或负相关)而协方差就可以告诉我们这一点,协方差的公式为:文字描述为:如果有X,Y两个变量,每个时刻的“X值与其均值之差”乘以“Y值与其均值之差”得到一个乘积,再对这每时刻的乘积求和并求出均值如果X,Y的变化趋势是有规律的话,例如
2020-06-17 14:08:52
9707
ZoteroConnector_5.0.40_0
2018-08-18
matlab绘制FPPI测试数据
2020-04-18
Vimium_1.63.3_0
2018-08-18
基于S3C2410嵌入式MDK开发实验与实践(PDF和PPT讲义)
2018-01-31
miss rate versus false positives per image(FPPI)绘制代码
2020-11-13
图片搬家demo例子.zip
2021-10-29
《模式识别与智能计算》源代码
2018-01-31
Chrono下载管理器(资源嗅探器)
2018-08-18
FEAST特征选择算法源码(matlab)
2018-01-31
.hanlp.zip
2020-06-03
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人