COCO 格式

本文详细介绍了COCO数据集的标注格式,包括Object Instance、Object Keypoint和Image Caption三种类型,涉及JSON结构体、annotation、categories等关键元素,以及它们在不同标注任务中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

COCO的 全称是Common Objects in COntext,是微软团队提供的一个可以用来进行图像识别的数据集。MS COCO数据集中的图像分为训练、验证和测试集。COCO通过在Flickr上搜索80个对象类别和各种场景类型来收集图像,其使用了亚马逊的Mechanical Turk(AMT)。

比如标注image captions(看图说话)这种类型的步骤如下:

(AMT上COCO标注步骤)

COCO通过大量使用Amazon Mechanical Turk来收集数据。COCO数据集现在有3种标注类型:object instances(目标实例), object keypoints(目标上的关键点), 和image captions(看图说话),使用JSON文件存储。比如下面就是Gemfield下载的COCO 2017年训练集中的标注文件:

可以看到其中有上面所述的三种类型,每种类型又包含了训练和验证,所以共6个JSON文件。

基本的JSON结构体类型

object instances(目标实例)、object keypoints(目标上的关键点)、image captions(看图说话)这3种类型共享这些基本类型:info、image、license。

而annotation类型则呈现出了多态:

{
    "info": info,
    "licenses": [license],
    "images": [image],
    "annotations": [annotation],
}
    
info{
    "year": int,
    "version": str,
    "description": str,
    "contributor": str,
    "url": str,
    "date_created": datetime,
}
license{
    "id": int,
    "name": str,
    "url": str,
} 
image{
    "id": int,
    "width": int,
    "height": int,
    "file_name": str,
    "license": int,
    "flickr_url": str,
    "coco_url": str,
    "date_captured": datetime,
}

1,info类型,比如一个info类型的实例:

"info":{
	"description":"This is stable 1.0 version of the 2014 MS COCO dataset.",
	"url":"https:\/\/2.zoppoz.workers.dev:443\/http\/mscoco.org",
	"version":"1.0","year":2014,
	"contributor":"Microsoft COCO group",
	"date_created":"2015-01-27 09:11:52.357475"
},

2,Images是包含多个image实例的数组,对于一个image类型的实例:

{
	"license":3,
	"file_name":"COCO_val2014_000000391895.jpg",
	"coco_url":"https:\/\/2.zoppoz.workers.dev:443\/http\/mscoco.org\/images\/391895",
	"height":360,"width":640,"date_captured":"2013-11-14 11:18:45",
	"flickr_url":"https:\/\/2.zoppoz.workers.dev:443\/http\/farm9.staticflickr.com\/8186\/8119368305_4e622c8349_z.jpg",
	"id":391895
},

3,licenses是包含多个license实例的数组,对于一个license类型的实例:

{
	"url":"https:\/\/2.zoppoz.workers.dev:443\/http\/creativecommons.org\/licens
<think>好的,用户想了解COCO格式的数据结构和如何处理这种数据。首先,我需要回忆一下COCO数据集的相关知识,并查看用户提供的引用内容,看看有没有可以直接用上的信息。 根据引用[1],COCO的注释数据是JSON格式的,并且有专门的API来帮助处理。所以首先应该解释COCO的数据结构,特别是JSON文件里的各个字段。比如,用户可能想知道images、annotations、categories这些主要部分的结构。 接下来,用户可能想知道如何处理这些数据,比如如何读取、解析和可视化。引用[1]提到COCO API可以加载和解析注释,可能需要详细说明如何使用这个API,比如安装方法、初始化步骤,以及如何访问不同部分的数据。 另外,引用[2]提到了YOLO格式COCO格式的转换,这可能也是用户关心的处理步骤之一。不过用户的问题主要在于数据结构和处理,所以转换可能作为相关的一部分,但需要先聚焦在结构上。 然后,引用[3]链接到XTuner关于LLaVA数据集的准备,可能涉及多模态数据,但不确定是否相关,可能需要暂时忽略,除非用户的问题涉及到图像描述。 现在需要组织回答的结构:首先介绍COCO格式的数据结构,分点说明各个部分,如images数组、annotations数组、categories数组。每个部分给出具体的字段例子,比如image的id、file_name等,annotation的id、image_id、bbox等。 然后,处理COCO数据的步骤,比如安装COCO API,加载数据集,访问数据,可视化,以及数据转换。这里可以结合引用[1]和引用[2]的内容,比如使用COCO API的方法,以及转换脚本的使用。 最后,生成相关问题,确保问题覆盖数据结构、处理工具、应用场景等方面,比如如何读取特定类别的注释,或者如何处理分割数据。 需要注意用户提到的所有行内数学表达式用$...$,但这里可能用不上,因为数据结构更多是字段描述。但如果有涉及公式,比如归一化处理,可能需要用。不过COCO数据中的bbox是绝对坐标,可能不需要数学公式,所以可能不涉及。 最后检查是否符合系统级指令,比如中文回答,正确引用标记,以及生成相关问题。</think>### COCO格式数据结构及处理方法 #### 1. COCO数据结构解析 COCO数据集采用JSON格式存储注释数据,主要包含以下核心字段: - **images数组**:存储图像元数据 ```json { "id": 1, "file_name": "000000001.jpg", "width": 640, "height": 480, "coco_url": "http://...", "license": 1 } ``` - **annotations数组**:记录对象实例信息 ```json { "id": 1001, "image_id": 1, "category_id": 18, "segmentation": [[x1,y1,x2,y2...]], "area": 245.76, "bbox": [x,y,width,height], "iscrowd": 0 } ``` - **categories数组**:定义对象类别 ```json { "id": 18, "name": "dog", "supercategory": "animal" } ``` #### 2. 数据处理方法 (1) **安装COCO API**: ```bash pip install pycocotools ``` (2) **加载数据集**: ```python from pycocotools.coco import COCO coco = COCO('annotations/instances_train2017.json') ``` (3) **数据访问示例**: ```python # 获取所有猫的图像ID cat_ids = coco.getCatIds(catNms=['cat']) img_ids = coco.getImgIds(catIds=cat_ids) ``` (4) **可视化标注**: ```python import matplotlib.pyplot as plt img = coco.loadImgs(img_ids[0])[0] I = plt.imread(img['coco_url']) plt.imshow(I) coco.showAnns(coco.loadAnns(coco.getAnnIds(imgIds=img['id']))) ``` #### 3. 格式转换工具 YOLO与COCO格式互转(引用[2]): ```bash # YOLO转COCO python yolo-seg2coco.py --yolo_image_path datasets/images/val/ --yolo_label_path datasets/labels/val --classes person --coco_output_dir output/ ``` #### 4. 多模态数据处理 对于图像描述数据(引用[1][3]),COCO API支持caption字段访问: ```python captions = coco.loadAnns(coco.getAnnIds(imgIds=img_id)) print(captions[0]['caption']) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值