统计学习方法----朴素贝叶斯Python实例

本文介绍了朴素贝叶斯方法,强调其作为生成模型的性质和条件独立性假设。通过高斯朴素贝叶斯模型的示例,展示了如何在Python中运用scikit-learn库进行训练和预测,并指出该方法虽然简单高效,但在某些情况下分类性能可能有限。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

朴素贝叶斯

1.朴素贝叶斯法是典型的生成学习方法,实际上学习到生成数据的机制,属于生成模型。生成方法由训练数据学习联合概率分布 P(X,Y)P(X,Y)P(X,Y),然后基于此模型,对给定的输入xxx,求得后验概率分布P(Y∣X)P(Y|X)P(YX) ,以后验概率最大的输出为yyy。具体来说,利用训练数据学习P(X∣Y)P(X|Y)P(XY)P(Y)P(Y)P(Y)的估计,得到联合概率分布:

P(X,Y)=P(Y)P(X∣Y)P(X,Y)=P(Y)P(X|Y)P(X,Y)P(Y)P(XY)
概率估计方法可以是极大似然估计或贝叶斯估计。

2.朴素贝叶斯法的基本假设是条件独立性,

P(X=x∣Y=ck)=P(X(1)=x(1),⋯ ,X(n)=x(n)∣Y=ck)=∏j=1nP(X(j)=x(j)∣Y=ck)\begin{aligned} P(X=x | Y=c_{k} )=P\left(X^{(1)}=x^{(1)}, \cdots, X^{(n)}=x^{(n)} | Y=c_{k}\right) \\ =\prod_{j=1}^{n} P\left(X^{(j)}=x^{(j)} | Y=c_{k}\right) \end{aligned}P(X=xY=ck)=P(X(1)=x(1),,X(n)=x(n)Y=ck)=j=1nP(X(j)=x(j)Y=ck)
这是一个较强的假设。由于这一假设,模型包含的条件概率的数量大为减少,朴素贝叶斯法的学习与预测大为简化。因而朴素贝叶斯法高效,且易于实现。其缺点是分类的性能不一定很高。

3.朴素贝叶斯法利用贝叶斯定理与学到的联合概率模型进行分类预测。

P(Y∣X)=P(X,Y)P(X)=P(Y)P(X∣Y)∑YP(Y)P(X∣Y)P(Y | X)=\frac{P(X, Y)}{P(X)}=\frac{P(Y) P(X | Y)}{\sum_{Y} P(Y) P(X | Y)}P(YX)=P(X)P(X,Y)=YP(Y)P(XY)P(Y)P(XY)
将输入xxx分到后验概率最大的类yyy

y=arg⁡max⁡ckP(Y=ck)∏j=1nP(Xj=x(j)∣Y=ck)y=\arg \max _{c_{k}} P\left(Y=c_{k}\right) \prod_{j=1}^{n} P\left(X_{j}=x^{(j)} | Y=c_{k}\right)y=argckmaxP(Y=ck)j=1nP(Xj=x(j)Y=ck)
后验概率最大等价于0-1损失函数时的期望风险最小化。

4 . 学习与分类算法

  • (1)计算先验概率和条件概率
  • (2)对给定的实例xxx,计算后验概率
  • (3)通过后验概率最大化准则确定xxx的类

模型:

  • 高斯模型
  • 多项式模型
  • 伯努利模型

GaussianNB 高斯朴素贝叶斯

特征的可能性被假设为高斯

高斯概率分布函数:P(xi∣yk)=12πσyk2exp(−(xi−μyk)22σyk2)P(x_i | y_k)=\frac{1}{\sqrt{2\pi\sigma^2_{yk}}}exp(-\frac{(x_i-\mu_{yk})^2}{2\sigma^2_{yk}})P(xiyk)=2πσyk21exp(2σyk2(xiμyk)2)

数学期望(mean):μ\muμ(总体均值)

总体方差:σ2=∑(X−μ)2N\sigma^2=\frac{\sum(X-\mu)^2}{N}σ2=N(Xμ)2

相关参考:https://machinelearningmastery.com/naive-bayes-classifier-scratch-python/

Python实例

加载类库

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from collections import Counter
import math

加载并切分数据

def create_data():
    iris = load_iris()
    df = pd.DataFrame(iris.data, columns = iris.feature_names)
    df['label'] = iris.target
    df.columns = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'label']
    data = np.array(df.iloc[:100, :])
    return data[:, :-1], data[:,-1]

%70作为训练集,%30作为验证集

X, y = create_data()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3 )
print(X.shape)
print(y.shape)
#print(X_train.shape)
print(X_train)

定义高斯朴素贝叶斯模型

class NaiveBayes:
    def __init__(self):
        self.model = None
    
    # 数学期望
    @staticmethod # 在没有实例的时候,直接通过类名就可以访问的方法(参数中不包含self)
    def mean(X):
        return sum(X) / float(len(X))
    
    # 标准差
    def stdev(self, X):
        avg = self.mean(X)
        return math.sqrt(sum([pow(x - avg, 2) for x in X]) / float(len(X)))
    
    # 高斯概率分布函数
    def gaussian_probability(self, x, mean, stdev):
        exponent = math.exp(-(math.pow(x - mean, 2) / (2 * math.pow(stdev, 2))))
        return (1 / (math.sqrt(2 * math.pi) * stdev)) * exponent
    
    # 处理X_train
    def summarize(self, train_data):
        summaries = [(self.mean(i), self.stdev(i)) for i in zip(*train_data)]
        return summaries
    # 使用*运算符将数据集传递给zip()函数,该运算符将数据集分成每一行的单独列表
    
    # 分类别求出数学期望和标准差
    def fit(self, X, y):
        labels = list(set(y))
        data = {label: [] for label in labels} # 按类别(0,1)分为两个键值对
        print(data)
        for f, label in zip(X, y):
            data[label].append(f) # 对应0或1分类归属为相应的矩阵
        print(data)
        self.model = {
            label: self.summarize(value)
            for label, value in data.items()
        }
        print(self.model)
        return 'gaussianNB train done!'
    
    # 使用高斯概率分布函数计算概率
    def calculate_probabilities(self, input_data):
        probabilities = {}
        for label, value in self.model.items():
            probabilities[label] = 1
            for i in range(len(value)):
                print(value[i]) # 训练数据的期望与标准差
                mean, stdev = value[i]
                probabilities[label] *= self.gaussian_probability(input_data[i], mean, stdev)
                print(probabilities[label])
        return probabilities
    
    # 类别
    def predict(self, X_test):
        label = sorted(
            self.calculate_probabilities(X_test).items(),
            key=lambda x: x[-1])[-1][0] # 取后验概率最大值为预测类别
        #print(sorted(self.calculate_probabilities(X_test).items(),key=lambda x: x[-1]))
        return label
    
    def score(self, X_test, y_test):
        right = 0
        for X, y in zip(X_test, y_test):
            label = self.predict(X)
            if label == y:
                right += 1
        return right / float(len(X_test))

训练并预测点xxx=[4.5, 3.6, 1.5, 0.4]的类别

model = NaiveBayes()
model.fit(X_train, y_train)
print(model.predict([4.5, 3.6, 1.5, 0.4]))

利用测试数据集测试模型精确度

model.score(X_test, y_test)

测试精度为1

scikit-learn实例

from sklearn.naive_bayes import GaussianNB
clf = GaussianNB()
clf.fit(X_train, y_train)
clf.score(X_test, y_test)
clf.predict([[4.4, 3.2, 1.3, 0.2]])

预测点类别是:0,测试数据集的测试精度为1

伯努利模型和多项式模型类似:

from sklearn.naive_bayes import BernoulliNB, MultinomialNB # 伯努利模型、多项式模型

参考:https://github.com/fengdu78/lihang-code

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值