朴素贝叶斯
1.朴素贝叶斯法是典型的生成学习方法,实际上学习到生成数据的机制,属于生成模型。生成方法由训练数据学习联合概率分布 P(X,Y)P(X,Y)P(X,Y),然后基于此模型,对给定的输入xxx,求得后验概率分布P(Y∣X)P(Y|X)P(Y∣X) ,以后验概率最大的输出为yyy。具体来说,利用训练数据学习P(X∣Y)P(X|Y)P(X∣Y)和P(Y)P(Y)P(Y)的估计,得到联合概率分布:
P(X,Y)=P(Y)P(X∣Y)P(X,Y)=P(Y)P(X|Y)P(X,Y)=P(Y)P(X∣Y)
概率估计方法可以是极大似然估计或贝叶斯估计。
2.朴素贝叶斯法的基本假设是条件独立性,
P(X=x∣Y=ck)=P(X(1)=x(1),⋯ ,X(n)=x(n)∣Y=ck)=∏j=1nP(X(j)=x(j)∣Y=ck)\begin{aligned} P(X=x | Y=c_{k} )=P\left(X^{(1)}=x^{(1)}, \cdots, X^{(n)}=x^{(n)} | Y=c_{k}\right) \\
=\prod_{j=1}^{n} P\left(X^{(j)}=x^{(j)} | Y=c_{k}\right) \end{aligned}P(X=x∣Y=ck)=P(X(1)=x(1),⋯,X(n)=x(n)∣Y=ck)=j=1∏nP(X(j)=x(j)∣Y=ck)
这是一个较强的假设。由于这一假设,模型包含的条件概率的数量大为减少,朴素贝叶斯法的学习与预测大为简化。因而朴素贝叶斯法高效,且易于实现。其缺点是分类的性能不一定很高。
3.朴素贝叶斯法利用贝叶斯定理与学到的联合概率模型进行分类预测。
P(Y∣X)=P(X,Y)P(X)=P(Y)P(X∣Y)∑YP(Y)P(X∣Y)P(Y | X)=\frac{P(X, Y)}{P(X)}=\frac{P(Y) P(X | Y)}{\sum_{Y} P(Y) P(X | Y)}P(Y∣X)=P(X)P(X,Y)=∑YP(Y)P(X∣Y)P(Y)P(X∣Y)
将输入xxx分到后验概率最大的类yyy。
y=argmaxckP(Y=ck)∏j=1nP(Xj=x(j)∣Y=ck)y=\arg \max _{c_{k}} P\left(Y=c_{k}\right) \prod_{j=1}^{n} P\left(X_{j}=x^{(j)} | Y=c_{k}\right)y=argckmaxP(Y=ck)j=1∏nP(Xj=x(j)∣Y=ck)
后验概率最大等价于0-1损失函数时的期望风险最小化。
4 . 学习与分类算法
- (1)计算先验概率和条件概率
- (2)对给定的实例xxx,计算后验概率
- (3)通过后验概率最大化准则确定xxx的类
模型:
- 高斯模型
- 多项式模型
- 伯努利模型
GaussianNB 高斯朴素贝叶斯
特征的可能性被假设为高斯
高斯概率分布函数:P(xi∣yk)=12πσyk2exp(−(xi−μyk)22σyk2)P(x_i | y_k)=\frac{1}{\sqrt{2\pi\sigma^2_{yk}}}exp(-\frac{(x_i-\mu_{yk})^2}{2\sigma^2_{yk}})P(xi∣yk)=2πσyk21exp(−2σyk2(xi−μyk)2)
数学期望(mean):μ\muμ(总体均值)
总体方差:σ2=∑(X−μ)2N\sigma^2=\frac{\sum(X-\mu)^2}{N}σ2=N∑(X−μ)2
相关参考:https://machinelearningmastery.com/naive-bayes-classifier-scratch-python/
Python实例
加载类库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from collections import Counter
import math
加载并切分数据
def create_data():
iris = load_iris()
df = pd.DataFrame(iris.data, columns = iris.feature_names)
df['label'] = iris.target
df.columns = ['sepal-length', 'sepal-width', 'petal-length', 'petal-width', 'label']
data = np.array(df.iloc[:100, :])
return data[:, :-1], data[:,-1]
%70作为训练集,%30作为验证集
X, y = create_data()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3 )
print(X.shape)
print(y.shape)
#print(X_train.shape)
print(X_train)
定义高斯朴素贝叶斯模型
class NaiveBayes:
def __init__(self):
self.model = None
# 数学期望
@staticmethod # 在没有实例的时候,直接通过类名就可以访问的方法(参数中不包含self)
def mean(X):
return sum(X) / float(len(X))
# 标准差
def stdev(self, X):
avg = self.mean(X)
return math.sqrt(sum([pow(x - avg, 2) for x in X]) / float(len(X)))
# 高斯概率分布函数
def gaussian_probability(self, x, mean, stdev):
exponent = math.exp(-(math.pow(x - mean, 2) / (2 * math.pow(stdev, 2))))
return (1 / (math.sqrt(2 * math.pi) * stdev)) * exponent
# 处理X_train
def summarize(self, train_data):
summaries = [(self.mean(i), self.stdev(i)) for i in zip(*train_data)]
return summaries
# 使用*运算符将数据集传递给zip()函数,该运算符将数据集分成每一行的单独列表
# 分类别求出数学期望和标准差
def fit(self, X, y):
labels = list(set(y))
data = {label: [] for label in labels} # 按类别(0,1)分为两个键值对
print(data)
for f, label in zip(X, y):
data[label].append(f) # 对应0或1分类归属为相应的矩阵
print(data)
self.model = {
label: self.summarize(value)
for label, value in data.items()
}
print(self.model)
return 'gaussianNB train done!'
# 使用高斯概率分布函数计算概率
def calculate_probabilities(self, input_data):
probabilities = {}
for label, value in self.model.items():
probabilities[label] = 1
for i in range(len(value)):
print(value[i]) # 训练数据的期望与标准差
mean, stdev = value[i]
probabilities[label] *= self.gaussian_probability(input_data[i], mean, stdev)
print(probabilities[label])
return probabilities
# 类别
def predict(self, X_test):
label = sorted(
self.calculate_probabilities(X_test).items(),
key=lambda x: x[-1])[-1][0] # 取后验概率最大值为预测类别
#print(sorted(self.calculate_probabilities(X_test).items(),key=lambda x: x[-1]))
return label
def score(self, X_test, y_test):
right = 0
for X, y in zip(X_test, y_test):
label = self.predict(X)
if label == y:
right += 1
return right / float(len(X_test))
训练并预测点xxx=[4.5, 3.6, 1.5, 0.4]的类别
model = NaiveBayes()
model.fit(X_train, y_train)
print(model.predict([4.5, 3.6, 1.5, 0.4]))
利用测试数据集测试模型精确度
model.score(X_test, y_test)
测试精度为1
scikit-learn实例
from sklearn.naive_bayes import GaussianNB
clf = GaussianNB()
clf.fit(X_train, y_train)
clf.score(X_test, y_test)
clf.predict([[4.4, 3.2, 1.3, 0.2]])
预测点类别是:0,测试数据集的测试精度为1
伯努利模型和多项式模型类似:
from sklearn.naive_bayes import BernoulliNB, MultinomialNB # 伯努利模型、多项式模型
参考:https://github.com/fengdu78/lihang-code