CUDA与GPU面试题

本文介绍了CUDA的基本概念,包括流处理器(sp)、流多处理器(sm)等,并对比了利用图形API和CUDA进行GPU通用计算的性能差异。同时探讨了GPU与CPU在指令集上的不同之处以及GPU架构的优缺点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CUDA概念

  • sp:小核(流处理器)最基本的处理单元
  • sm:大核(流多处理器)
  • wrap:GPU执行程序的调度单位
  • grid:有多个block
  • block:有多个thread
  • thread

利用图形API和CUDA进行GPU通用计算的性能差别

  • 需要将问题转化成图形学,而CUDA使用C语言编写,适合做通用计算

GPU指令和CPU指令 最大区别:CPU需要运行OS,不但要处理中断,还要负责存储器空间分配回收,GPU不需要做这些,所以GPU很空闲

GPU架构缺点:精度问题,编程模式不太灵活

CPU切换线程成本高

优化方法

  1. 对于block和thread分配问题:一个block要有32个thread
  2.  
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值