opencv学习(十五):模板匹配

本文介绍了OpenCV中的模板匹配方法,包括matchTemplate函数和minMaxLoc函数的使用。详细讲解了6种不同的匹配度量方式,如差值平方和匹配、相关匹配等,并解释了这些方法的原理和应用场景。还给出了代码实例和运行效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

引言

        模板匹配是在一幅图像中寻找一个特定目标的方法之一。这种方法的原理非常简单,遍历图像中的每一个可能的位置,比较各处与模板是否“相似”,当相似度足够高时,就认为找到了我们的目标。

匹配方法

         在 OpenCV 中,提供了相应的匹配函数完成这个操作:matchTemplate、 minMaxLoc

         matchTemplate 函数:在模板和输入图像之间寻找匹配,获得匹配结果图像 
         minMaxLoc 函数:在给定的矩阵中寻找最大和最小值,并给出它们的位置

         在具体介绍这两个函数之前呢,我们还要介绍一个概念,就是如何来评价两幅图像是否“相似”。 
OpenCV 提供了 6 种计算两幅图像相似度的方法:

  • 差值平方和匹配 CV_TM_SQDIFF
  • 标准化差值平方和匹配 CV_TM_SQDIFF_NORMED
  • 相关匹配 CV_TM_CCORR
  • 标准相关匹配 CV_TM_CCORR_NORMED
  • 相关匹配 CV_TM_CCOEFF
  • 标准相关匹配 CV_TM_CCOEFF_NORMED

 方法介绍

         下面就分别来介绍。首先,先给出几个符号: 
T(x,y)  用来表示我们的模板。I(x,y) 是我们的目标图像。 R(x,y) 是用来描述相似度的函数。

差值平方和匹配 CV_TM_SQDIFF

这类方法利用图像与模板各个像素差值的平方和来进行匹配,最好匹配为 0。 匹配越差,匹配值越大。

                                       

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值