机器学习----多项式回归详解

本文详细介绍了如何使用多项式回归解决非线性关系预测问题。通过增加特征如x^2,将原本的线性回归转化为二元线性回归。在 sklearn 中,可以使用 PolynomialFeatures 进行多项式特征生成,并结合 Pipeline 进行数据预处理和模型训练,以应对高阶多项式可能导致的特征爆炸问题。通过实例展示了如何通过 Pipeline 实现多项式回归并得到良好拟合效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

我们在使用线性回归的时候有个局限性,就是他是假设数据背后是存在线性关系的,实际中这种情况还是比较少的。较多的还是非线性关系,多项式回归法正是解决数据之间非线性关系进行预测的机器学习算法,思路还是线性回归的原理。本质还是线性回归,只是增加了样本的特征。如下右图:将x、x^2当成两个特征。

 

                        

在右图中 相当于在左边的基础上增加了一个特征x^2

上手实践

import numpy as np
import matplotlib.pyplot as plt

x=np.random.uniform(-3,3,size=100) #生成x特征 -3到3  100个
X=x.reshape(-1,1)#将x编程100行1列的矩阵

y=0.5*x**2+x+2+np.random.normal(0,1,size=100)#模拟的是标记y  对应的是x的二次函数

plt.scatter(x,y)#画出x,y散点图
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值